# Copyright (c) 2024 Microsoft # Licensed under The MIT License [see LICENSE for details] import inspect import json import os from importlib import import_module from transformers.models.llama.modeling_llama import * from transformers.utils.import_utils import _is_package_available if _is_package_available("vllm"): from vllm.attention.backends.flash_attn import * from ..ops.block_sparse_flash_attention import block_sparse_attention from ..ops.pit_sparse_flash_attention_v2 import vertical_slash_sparse_attention from ..ops.streaming_kernel import streaming_forward, streaming_forward2 from .snap_kv import * last_q = 64 arange = torch.arange(last_q, device="cuda") LAST_Q_MASK = arange[None, None, :, None] >= arange[None, None, None, :] ROPE_TYPE = None SEARCH_MASK = None def init_minference_parameters(self): config = self.config.to_dict() self.starting_layer = config.get("starting_layer", 0) self.is_search = config.get("is_search", False) # self.n_init = config.get("n_init", 128) # self.n_local = config.get("n_local", 3968) self.ne_inf = None self.config_path = config.get("config_path", "") if os.path.exists(self.config_path) and self.layer_idx < len(json.load(open(self.config_path))): self.best_pattern = {int(ii): jj for ii, jj in json.load(open(self.config_path))[self.layer_idx].items()} else: self.best_pattern = {} self.vertical, self.slash = None, None # import apply_rotary_pos_emb if "apply_rotary_pos_emb" not in self.__dict__: global apply_rotary_pos_emb model_path = self.rotary_emb.__class__.__module__ apply_rotary_pos_emb = getattr(import_module(model_path), "apply_rotary_pos_emb") self.apply_rotary_pos_emb = True def sum_all_diagonal_matrix(mat: torch.tensor): b, h, n, m = mat.shape zero_mat = torch.zeros((b, h, n, n)).to(mat.device) # Zero matrix used for padding mat_padded = torch.cat((zero_mat, mat, zero_mat), -1) # pads the matrix on left and right mat_strided = mat_padded.as_strided((1, 1, n, n + m), (1, n * (2 * n + m), 2 * n + m + 1, 1)) # Change the strides sum_diags = torch.sum(mat_strided, 2) # Sums the resulting matrix's columns return sum_diags[:,:,1:] def gather(t, dim, i): """A broadcasting version of torch.gather.""" dim += (dim < 0) * t.ndim return t.gather(dim, i.expand(*t.shape[:dim], i.shape[dim], *t.shape[dim + 1 :])) def gather_qkv(q, k, v, attention_mask): attn_weights = torch.matmul(q, k.transpose(2, 3)) / math.sqrt(q.size(-1)) + attention_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(q.dtype) attn_output = torch.matmul(attn_weights, v) return attn_output def search_pattern(q, k, head): q_len = q.shape[2] head_dim = q.shape[-1] def vertical_and_slash(vertical_size, slash_size): last_q = 64 q_len = q.shape[2] qk_idxs = [ii + q_len for ii in list(range(-last_q, 0, 1))] qk = torch.matmul(q[:,:,qk_idxs,:], k.transpose(2, 3))/ math.sqrt(head_dim) + attention_mask[:,:,qk_idxs] qk = torch.nn.functional.softmax(qk, dim=-1, dtype=torch.float32) vertical = qk.sum(-2, keepdim=True) vertical[...,:30] = 10000 vertical_topk = torch.topk(-vertical, q_len - vertical_size, -1).indices slash = sum_all_diagonal_matrix(qk)[...,:-last_q + 1] slash[...,-30:] = 10000 slash_topk = slash slash = torch.topk(slash, slash_size, -1).indices - (q_len - 1) slash = torch.stack([torch.sparse.spdiags(torch.ones(slash_size, q_len), slash.cpu()[0][_], (q_len, q_len)).to_dense() for _ in range(1)]).to(q.device) est_attn = torch.ones_like(attn_weights) dim = 3 est_attn = est_attn.scatter(3, vertical_topk.expand(*est_attn.shape[:dim], vertical_topk.shape[dim], *est_attn.shape[dim + 1 :]), 0) est_attn = est_attn + slash est_attn = (est_attn > 0).float() est_attn = torch.tril(est_attn) attn_weights_x = attn_weights * est_attn res3 = attn_weights_x[:,:,2500:].sum(-1).mean(-1).squeeze().float().detach().cpu().numpy() return res3 def stream_llm(vertical_size, slash_size): q_len = q.shape[2] mask = torch.triu(torch.tril(torch.ones(q_len, q_len), 0), -slash_size).to(q) mask[:,:vertical_size] = 1 mask = mask.unsqueeze(0).unsqueeze(1) est_attn = torch.tril(mask) attn_weights_x = attn_weights * est_attn res3 = attn_weights_x[:,:,2500:].sum(-1).mean(-1).squeeze().float().detach().cpu().numpy() return res3 def block_sparse(topk_ratio, slash_size=None): block_num = (q_len -1) // 32 + 1 block_q = torch.zeros(1,1,block_num * 32,head_dim).to(q) block_q[:,:,:q_len] = q block_q = block_q.reshape(1,1,block_num,32,-1).mean(-2) block_k = torch.zeros(1,1,block_num * 32,head_dim).to(k) block_k[:,:,:q_len] = k block_k = block_k.reshape(1,1,block_num,32,-1).mean(-2) qk = torch.matmul(block_q, block_k.transpose(2, 3)) + attention_mask[:,:,:block_num,:block_num] est_attn = torch.ones_like(qk) block_topk = torch.topk(-qk, block_num - block_num//topk_ratio, -1).indices dim = 3 est_attn = est_attn.scatter(3, block_topk.expand(*est_attn.shape[:dim], block_topk.shape[dim], *est_attn.shape[dim + 1 :]), 0) est_attn = est_attn.unsqueeze(3).unsqueeze(-1).repeat(1,1,1,32,1,32).reshape(1,1,block_num * 32, block_num * 32)[...,:q_len,:q_len] est_attn = torch.tril(est_attn) attn_weights_x = attn_weights * est_attn res2 = attn_weights_x[:,:,2500:].sum(-1).mean(-1).squeeze().float().detach().cpu().numpy() return res2 global SEARCH_MASK if SEARCH_MASK is None: attention_mask = torch.full((q_len, q_len), torch.finfo(q.dtype).min, device="cuda") mask_cond = torch.arange(attention_mask.size(-1), device="cuda") attention_mask.masked_fill_(mask_cond < (mask_cond + 1).view(attention_mask.size(-1), 1), 0) attention_mask = attention_mask[None, None, :] SEARCH_MASK = attention_mask else: attention_mask = SEARCH_MASK attn_weights = torch.matmul(q, k.transpose(2, 3)) / math.sqrt(head_dim) + attention_mask attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(q.dtype) best_s, best_v, best_score, best_ty = 0, 0, 0, "" all_info = [] for ty, fc in [("stream_llm", stream_llm), ("vertical_and_slash", vertical_and_slash), ("block_sparse", block_sparse)]: if ty == "stream_llm": vs_list = [(100, 800)] elif ty == "vertical_and_slash": vs_list = [(30, 800), (100, 750), (500, 700), (3500, 100)] else: vs_list = [(8, 1)] for v_size, s_size in vs_list: score = fc(v_size, s_size) score = score.item() all_info.append([ty, v_size, s_size, score]) if score > best_score: best_score = score best_s, best_v = s_size, v_size best_ty = ty if best_ty == "stream_llm": best_ty = "vertical_and_slash" if best_ty == "block_sparse": best_ty, best_v, best_s = "vertical_and_slash", 1000, 6096 print(head, best_ty, best_v, best_s, best_score) return (best_ty, best_v, best_s, best_score) def search_pattern_v2(q, k, v, head): q_len = q.shape[2] head_dim = q.shape[-1] def vertical_and_slash_kernel(q, k, v, vertical_size, slash_size): vertical_size, slash_size = min(q_len, max(vertical_size, 30)), min(q_len, max(slash_size, 50)) last_q = 64 qk = torch.einsum(f'bhmk, bhnk -> bhmn', q[:,:,-last_q:,:], k) qk[:, :, :, -last_q:] = torch.where(LAST_Q_MASK, qk[:, :, :, -last_q:], -torch.inf) qk = torch.nn.functional.softmax(qk, dim=-1, dtype=torch.float32) vertical = qk.sum(-2, keepdim=True) vertical[...,:30] = torch.inf vertical_topk = torch.topk(vertical, vertical_size, -1).indices slash = sum_all_diagonal_matrix(qk)[...,:-last_q + 1] slash[...,-30:] = torch.inf slash_topk = slash slash = (q_len - 1) - torch.topk(slash, slash_size, -1).indices return vertical_slash_sparse_attention(q, k, v, vertical_topk, slash) def dense(q, k, v, vertical_size=None, slash_size=None): return flash_attn_func(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1,2), 0.0, softmax_scale=None, causal=q_len != 1).view(bsz, 1, q_len, head_dim) def block_sparse_kernel(q, k, v, vertical_size=None, slash_size=None): topk = 100 return block_sparse_attention(q, k, v, topk) best_s, best_v, best_score, best_ty = 0, 0, float("inf"), "" bsz = q.shape[0] all_info = [] ref = dense(q, k, v) for ty, fc in [("stream_llm", streaming_forward), ("vertical_and_slash", vertical_and_slash_kernel), ("block_sparse", block_sparse_kernel)]: if ty == "stream_llm": vs_list = [(100, 800)] elif ty == "vertical_and_slash": vs_list = [(30, 800), (100, 800), (100, 750), (500, 700), (3500, 100), (1000, 4096)] else: vs_list = [(10, 1)] for v_size, s_size in vs_list: score = fc(q, k, v, v_size, s_size) # delta = (ref - score).abs().sum() delta = ((ref - score).abs() > 5e-3).sum() score = delta.item() all_info.append([ty, v_size, s_size, score]) if score < best_score: best_score = score best_s, best_v = s_size, v_size best_ty = ty print(head, best_ty, best_v, best_s, best_score) return all_info def shift_matrix(mat): b, h, _, n = mat.shape zero_mat = torch.zeros((b, h, n, n)).to(mat.device) # Zero matrix used for padding mat_padded = torch.cat((zero_mat, mat, zero_mat), -1) # pads the matrix on left and right mat_strided = mat_padded.as_strided((1, 1, n, n + 2 * n), (1, n * (2 * n + n), 2 * n + n - 1, 1)) # Change the strides return mat_strided[...,2 * n-1:-1] def repeat(self, q, k, v, attention_mask): q_len = q.shape[2] if q_len == 1: return gather_qkv(q, k, v, attention_mask) qk = torch.matmul(q[:,:,-1:,:], k.transpose(2, 3)) / math.sqrt(self.head_dim) qk = qk.repeat(1,1,q_len, 1) qk = shift_matrix(qk) + attention_mask attn_weights = nn.functional.softmax(qk, dim=-1, dtype=torch.float32).to(q.dtype) attn_output = torch.matmul(attn_weights, v) return attn_output def gather_last_q_vertical_slash_topk_v4(self, q, k, v, head_id): kv_seq_len = k.size(2) def vertical_and_slash(attn_weights, vertical_size, slash_size): last_q = 64 q_len = q.shape[2] vertical_size, slash_size = min(q_len, max(vertical_size, 30)), min(q_len, max(slash_size, 50)) qk_idxs = [ii + q_len for ii in list(range(-last_q, 0, 1))] qk = torch.matmul(q[:,:,qk_idxs,:], k.transpose(2, 3))/ math.sqrt(self.head_dim) + attention_mask[:,:,qk_idxs] qk = torch.nn.functional.softmax(qk, dim=-1, dtype=torch.float32) vertical = qk.sum(-2, keepdim=True) vertical[...,:30] = -self.ne_inf vertical_topk = torch.topk(-vertical, q_len - vertical_size, -1).indices slash = sum_all_diagonal_matrix(qk)[...,:-last_q + 1] slash[...,-30:] = -self.ne_inf slash_topk = slash slash = torch.topk(slash, slash_size, -1).indices - (q_len - 1) slash = torch.stack([torch.sparse.spdiags(torch.ones(slash_size, q_len), slash.cpu()[0][_], (q_len, q_len)).to_dense() for _ in range(1)]).to(q.device) est_attn = torch.ones_like(attn_weights) dim = 3 est_attn = est_attn.scatter(3, vertical_topk.expand(*est_attn.shape[:dim], vertical_topk.shape[dim], *est_attn.shape[dim + 1 :]), 0) est_attn = est_attn + slash est_attn = (est_attn > 0).float() est_attn = torch.tril(est_attn) est_attn = (est_attn == 0).int() * self.ne_inf attn_weights = attn_weights + est_attn if self.kv_cache_compressed_v4: self.vertical = torch.topk(vertical, vertical_size * 4, -1).indices self.slash = (torch.topk(slash_topk, slash_size * 4, -1).indices - (q_len - 1)).unsqueeze(2) return attn_weights def stream_llm(attn_weights, vertical_size, slash_size): q_len = q.shape[2] vertical_size, slash_size = min(q_len, max(vertical_size, 30)), min(q_len, max(slash_size, 50)) mask = torch.triu(torch.tril(torch.ones(q_len, q_len), 0), -slash_size).to(q) mask[:,:vertical_size] = 1 mask = mask.unsqueeze(0).unsqueeze(1) est_attn = torch.tril(mask) est_attn = (est_attn == 0).int() * self.ne_inf attn_weights = attn_weights + est_attn if self.kv_cache_compressed_v4: self.vertical = torch.Tensor(list(range(vertical_size * 4))).long().to(q.device).unsqueeze(0).unsqueeze(0).unsqueeze(0) self.slash = torch.Tensor(list(range(-slash_size * 4, 1))).long().to(q.device).unsqueeze(0).unsqueeze(0).unsqueeze(0) return attn_weights def block_sparse(attn_weights, topk_ratio, slash_size=None, block_size=8): block_num = (q_len -1) // block_size + 1 block_q = torch.zeros(1,1,block_num * block_size,head_dim).to(q) block_q[:,:,:q_len] = q block_q = block_q.reshape(1,1,block_num,block_size,-1).mean(-2) block_k = torch.zeros(1,1,block_num * block_size,head_dim).to(k) block_k[:,:,:q_len] = k block_k = block_k.reshape(1,1,block_num,block_size,-1).mean(-2) qk = torch.matmul(block_q, block_k.transpose(2, 3)) + attention_mask[:,:,:block_num,:block_num] est_attn = torch.ones_like(qk) block_topk = torch.topk(-qk, block_num - block_num//topk_ratio, -1).indices dim = 3 est_attn = est_attn.scatter(3, block_topk.expand(*est_attn.shape[:dim], block_topk.shape[dim], *est_attn.shape[dim + 1 :]), 0) est_attn = est_attn.unsqueeze(3).unsqueeze(-1).repeat(1,1,1,block_size,1,block_size).reshape(1,1,block_num * block_size, block_num * block_size)[...,:q_len,:q_len] est_attn = torch.tril(est_attn) est_attn = (est_attn == 0).int() attn_weights = attn_weights + est_attn return attn_weights def dialted(q,k,v, type): q_len = q.shape[2] n_init = min(1024, q_len) vertical_topk = torch.arange(0, n_init, device=q.device)[None, None, None, :] slash = torch.arange(0, q_len, device=q.device) if type == 'dilated1': # 8k local with 1 interval slash = slash[-8192::2][None, None, :] elif type == 'dilated2': # 2k dense local + 4k local with 1 interval slash = torch.cat([slash[-2048:], slash[-6144:-2048:2]], 0)[None, None, :] slash = (q_len - 1) - slash return vertical_slash_sparse_attention(q, k, v, vertical_topk, slash) def vertical_and_slash_kernel(q, k, v, vertical_size, slash_size): vertical_size, slash_size = min(q_len, max(vertical_size, 30)), min(q_len, max(slash_size, 50)) last_q = min(64, q_len) qk = torch.einsum(f'bhmk, bhnk -> bhmn', q[:,:,-last_q:,:], k) qk[:, :, :, -last_q:] = torch.where(LAST_Q_MASK[...,-last_q:,-last_q:].to(q.device), qk[:, :, :, -last_q:], -torch.inf) qk = torch.nn.functional.softmax(qk, dim=-1, dtype=torch.float32) vertical = qk.sum(-2, keepdim=True) vertical[...,:30] = torch.inf vertical_topk = torch.topk(vertical, vertical_size, -1).indices slash = sum_all_diagonal_matrix(qk)[...,:-last_q + 1] slash[...,-100:] = torch.inf slash_topk = slash slash = (q_len - 1) - torch.topk(slash, slash_size, -1).indices return vertical_slash_sparse_attention(q, k, v, vertical_topk, slash) def vertical_and_slash_kernel_static(q, k, v, vertical_size, slash_size): if "vs" in self.__dict__: vertical_topk, slash = self.vs else: vertical_size, slash_size = min(q_len, max(vertical_size, 30)), min(q_len, max(slash_size, 50)) last_q = 64 qk = torch.einsum(f'bhmk, bhnk -> bhmn', q[:,:,-last_q:,:], k) qk[:, :, :, -last_q:] = torch.where(LAST_Q_MASK, qk[:, :, :, -last_q:], -torch.inf) qk = torch.nn.functional.softmax(qk, dim=-1, dtype=torch.float32) vertical = qk.sum(-2, keepdim=True) vertical[...,:30] = torch.inf vertical_topk = torch.topk(vertical, vertical_size, -1).indices slash = sum_all_diagonal_matrix(qk)[...,:-last_q + 1] slash[...,-30:] = torch.inf slash_topk = slash slash = (q_len - 1) - torch.topk(slash, slash_size, -1).indices self.vs = vertical_topk, slash return vertical_slash_sparse_attention(q, k, v, vertical_topk, slash) def dense(q, k, v, vertical_size=None, slash_size=None): return flash_attn_func(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1,2), 0.0, softmax_scale=None, causal=q_len != 1).view(bsz, 1, q_len, self.head_dim) def block_sparse_kernel(q, k, v, vertical_size=None, slash_size=None): topk = 100 return block_sparse_attention(q, k, v, topk) q_len = q.shape[2] bsz = q.shape[0] if self.config.to_dict().get("dilated1", False): return dialted(q, k, v, 'dilated1') if self.config.to_dict().get("dilated2", False): return dialted(q, k, v, 'dilated2') if self.config.to_dict().get("dense", False): return dense(q, k, v) if self.config.to_dict().get("streaming", False): return streaming_forward(q, k, v, self.config.streaming_kwargs["n_init"], self.config.streaming_kwargs["n_local"]) ty, vertical_size, slash_size, _ = self.best_pattern.get(head_id, ("vertical_and_slash", 1000, 6096, 1)) if self.config.to_dict().get("static_pattern", False): return vertical_and_slash_kernel_static(q, k, v, vertical_size, slash_size) if self.config.to_dict().get("vs_only", False): return vertical_and_slash_kernel(q, k, v, vertical_size, slash_size) if q_len == 1: return dense(q, k, v) fc = { "stream_llm": streaming_forward, "vertical_and_slash": vertical_and_slash_kernel, "block_sparse": block_sparse_kernel, }[ty] return fc(q, k, v, vertical_size, slash_size) def apply_rotary_pos_emb_single(q, cos, sin, position_ids, unsqueeze_dim=1): # cos = cos[position_ids].unsqueeze(unsqueeze_dim) # sin = sin[position_ids].unsqueeze(unsqueeze_dim) cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) return (q * cos) + (rotate_half(q) * sin) def minference_forward(): def forward( self, hidden_states, attention_mask, position_ids, past_key_value, output_attentions, use_cache, **kwargs, ): self.init_minference_parameters() self.ne_inf = torch.finfo(hidden_states.dtype).min bsz, q_len, _ = hidden_states.size() if "q_proj" in self.__dict__["_modules"]: query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) else: qkv = self.qkv_proj(hidden_states) query_pos = self.num_heads * self.head_dim query_states, key_states, value_states = torch.split(qkv, query_pos, -1) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: if self.layer_idx is None: raise ValueError( f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " "with a layer index." ) kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) global ROPE_TYPE if ROPE_TYPE is None: ROPE_TYPE = "seq_len" in inspect.signature(self.rotary_emb.forward).parameters if ROPE_TYPE: cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) else: cos, sin = self.rotary_emb(value_states, position_ids) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) if past_key_value is not None: cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) if self.is_search: if os.path.exists(self.config_path): config_list = json.load(open(self.config_path)) if self.layer_idx < len(config_list): assert False else: config_list = [] config = {} print("Layer", self.layer_idx) if q_len != 1: output = torch.empty_like(query_states) for head in range(query_states.size(1)): q = query_states[:, head, :, :].unsqueeze(1) k = key_states[:, head, :, :].unsqueeze(1) v = value_states[:, head, :, :].unsqueeze(1) if self.is_search: config[head] = search_pattern(q, k, head) if self.layer_idx >= self.starting_layer and not self.is_search: attn_output = self.gather_last_q_vertical_slash_topk_v4(q, k, v, head) elif is_flash_attn_2_available(): attn_output = flash_attn_func(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1,2), 0.0, softmax_scale=None, causal=q_len != 1).view(bsz, 1, q_len, self.head_dim) else: attn_output = gather_qkv(q, k, v, attention_mask) output[:, head:head + 1] = attn_output if self.is_search: config_list.append(config) with open(self.config_path, 'w') as json_file: json.dump(config_list, json_file) else: output = flash_attn_func(query_states.transpose(1, 2), key_states.transpose(1, 2), value_states.transpose(1,2), 0.0, softmax_scale=None, causal=q_len != 1).view(bsz, query_states.size(1), q_len, self.head_dim) attn_output = output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) return attn_output, None, past_key_value return forward def minference_kv_cache_cpu_forward(): def forward( self, hidden_states, attention_mask, position_ids, past_key_value, output_attentions, use_cache, **kwargs, ): self.init_minference_parameters() self.ne_inf = torch.finfo(hidden_states.dtype).min bsz, q_len, hidden_dim = hidden_states.size() kv_seq_len = q_len if use_cache and past_key_value is not None: kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) global ROPE_TYPE if ROPE_TYPE is None: ROPE_TYPE = "seq_len" in inspect.signature(self.rotary_emb.forward).parameters if ROPE_TYPE: cos, sin = self.rotary_emb(hidden_states, seq_len=kv_seq_len) else: cos, sin = self.rotary_emb(hidden_states, position_ids) cache_kwargs = {"sin": sin, "cos": cos} attn_out = torch.empty_like(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim) act_num_heads = self.num_heads // self.num_key_value_groups if use_cache: k = torch.zeros(bsz, act_num_heads, q_len, self.head_dim).to(hidden_states.dtype).cpu() v = torch.zeros(bsz, act_num_heads, q_len, self.head_dim).to(hidden_states.dtype).cpu() part_k, part_v = None, None for head in range(self.num_heads): if "q_proj" in self.__dict__["_modules"]: part_q = F.linear(hidden_states, self.q_proj.weight.view(self.num_heads, self.head_dim, hidden_dim)[head]).unsqueeze(2) else: part_q = F.linear(hidden_states, self.qkv_proj.weight.view(3, self.num_heads, self.head_dim, hidden_dim)[0][head]).unsqueeze(2) part_q = apply_rotary_pos_emb_single(part_q.transpose(1, 2), cos, sin, position_ids) if head % self.num_key_value_groups == 0: if "q_proj" in self.__dict__["_modules"]: part_k = F.linear(hidden_states, self.k_proj.weight.view(act_num_heads, self.head_dim, hidden_dim)[head // self.num_key_value_groups]).unsqueeze(2) part_v = F.linear(hidden_states, self.v_proj.weight.view(act_num_heads, self.head_dim, hidden_dim)[head // self.num_key_value_groups]).unsqueeze(2).transpose(1, 2) else: part_k = F.linear(hidden_states, self.qkv_proj.weight.view(3, act_num_heads, self.head_dim, hidden_dim)[1][head // self.num_key_value_groups]).unsqueeze(2) part_v = F.linear(hidden_states, self.qkv_proj.weight.view(3, act_num_heads, self.head_dim, hidden_dim)[2][head // self.num_key_value_groups]).unsqueeze(2).transpose(1, 2) part_k = apply_rotary_pos_emb_single(part_k.transpose(1, 2), cos, sin, position_ids) if use_cache and past_key_value is not None: k[:,head // self.num_key_value_groups] = part_k.cpu() v[:,head // self.num_key_value_groups] = part_v.cpu() part_k, part_v = past_key_value.get(part_k, part_v, self.layer_idx, head // self.num_key_value_groups, cache_kwargs) if self.layer_idx >= self.starting_layer: part_o = self.gather_last_q_vertical_slash_topk_v4(part_q, part_k, part_v, head) else: part_o = flash_attn_func(part_q, part_k, part_v.transpose(1, 2), 0.0, softmax_scale=None, causal=True).view(bsz, part_q.shape[1], self.head_dim) attn_out[:, :, head, :] = part_o if use_cache and past_key_value is not None: past_key_value.update(k, v, self.layer_idx, cache_kwargs) torch.matmul(attn_out.view(bsz, q_len, hidden_dim), self.o_proj.weight.T, out=hidden_states) torch.cuda.empty_cache() return (hidden_states, None, past_key_value) return forward def minference_with_snapkv_forward(): def forward( self, hidden_states, attention_mask, position_ids, past_key_value, output_attentions, use_cache, **kwargs, ): self.init_minference_parameters() self.ne_inf = torch.finfo(hidden_states.dtype).min init_snapkv(self) bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: if self.layer_idx is None: raise ValueError( f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " "with a layer index." ) if hasattr(self, "kv_seq_len"): #[SnapKV] add kv_seq_len if self.kv_seq_len != 0: kv_seq_len += self.kv_seq_len else: kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) else: kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) global ROPE_TYPE if ROPE_TYPE is None: ROPE_TYPE = "seq_len" in inspect.signature(self.rotary_emb.forward).parameters if ROPE_TYPE: cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) else: cos, sin = self.rotary_emb(value_states, position_ids) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) if past_key_value is not None: cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models if key_states.shape[-2] == kv_seq_len: # [SnapKV] add kv_cluster self.kv_seq_len = kv_seq_len # [SnapKV] register kv_seq_len key_states_compress, value_states_compress = self.kv_cluster.update_kv(key_states, query_states, value_states, attention_mask, self.num_key_value_groups) past_key_value.update(key_states_compress, value_states_compress, self.layer_idx, cache_kwargs) else: self.kv_seq_len += q_len key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) if self.layer_idx >= self.starting_layer: assert query_states.size(1) == key_states.size(1) == value_states.size(1) output = torch.empty_like(query_states) for head in range(query_states.size(1)): q = query_states[:, head, :, :].unsqueeze(1) k = key_states[:, head, :, :].unsqueeze(1) v = value_states[:, head, :, :].unsqueeze(1) output[:, head:head + 1] = self.gather_last_q_vertical_slash_topk_v4(q, k, v, head) attn_output = output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) return attn_output, None, past_key_value else: output = torch.empty_like(query_states) for head in range(query_states.size(1)): q = query_states[:, head, :, :].unsqueeze(1) k = key_states[:, head, :, :].unsqueeze(1) v = value_states[:, head, :, :].unsqueeze(1) if is_flash_attn_2_available(): attn_output = flash_attn_func(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1,2), 0.0, softmax_scale=None, causal=q_len != 1).view(bsz, 1, q.shape[2], self.head_dim) else: attn_output = gather_qkv(q, k, v, attention_mask) output[:, head:head + 1] = attn_output attn_output = output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) return attn_output, None, past_key_value return forward def gather_last_q_vertical_slash_topk_vllm(self, q, k, v, head_id): kv_seq_len = k.size(2) head_dim = q.size(-1) def vertical_and_slash_kernel(q, k, v, vertical_size, slash_size): vertical_size, slash_size = min(q_len, max(vertical_size, 30)), min(q_len, max(slash_size, 50)) last_q = min(64, q_len) qk = torch.einsum(f'bhmk, bhnk -> bhmn', q[:,:,-last_q:,:], k) qk[:, :, :, -last_q:] = torch.where(LAST_Q_MASK[...,-last_q:,-last_q:], qk[:, :, :, -last_q:], -torch.inf) qk = torch.nn.functional.softmax(qk, dim=-1, dtype=torch.float32) vertical = qk.sum(-2, keepdim=True) vertical[...,:30] = torch.inf vertical_topk = torch.topk(vertical, vertical_size, -1).indices slash = sum_all_diagonal_matrix(qk)[...,:-last_q + 1] slash[...,-100:] = torch.inf slash_topk = slash slash = (q_len - 1) - torch.topk(slash, slash_size, -1).indices return vertical_slash_sparse_attention(q, k, v, vertical_topk, slash) def block_sparse_kernel(q, k, v, vertical_size=None, slash_size=None): topk = 100 return block_sparse_attention(q, k, v, topk) def dense(q, k, v, vertical_size=None, slash_size=None): return flash_attn_func(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1,2), 0.0, softmax_scale=None, causal=q_len != 1).view(bsz, 1, q_len, head_dim) q_len = q.shape[2] bsz = q.shape[0] ty, vertical_size, slash_size, _ = self.best_pattern[head_id] if q_len == 1: return dense(q, k, v) fc = { "stream_llm": streaming_forward, "vertical_and_slash": vertical_and_slash_kernel, "block_sparse": block_sparse_kernel, }[ty] return fc(q, k, v, vertical_size, slash_size) def minference_vllm_forward( pattern_config ): def forward( self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: AttentionMetadata[FlashAttentionMetadata], kv_scale: float, layer_idx: int, ) -> torch.Tensor: """Forward pass with FlashAttention and PagedAttention. Args: query: shape = [num_tokens, num_heads * head_size] key: shape = [num_tokens, num_kv_heads * head_size] value: shape = [num_tokens, num_kv_heads * head_size] kv_cache = [2, num_blocks, block_size * num_kv_heads * head_size] attn_metadata: Metadata for attention. Returns: shape = [num_tokens, num_heads * head_size] """ self.best_pattern = {int(ii): jj for ii, jj in pattern_config[layer_idx].items()} def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ slen, num_key_value_heads, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, None, :, :].expand(slen, n_rep, num_key_value_heads, head_dim) return hidden_states.reshape(slen, num_key_value_heads * n_rep, head_dim) def minference_prefill_func( q, k, v, ): # (seq_len, num_heads, head_size) if q.size(-2) != k.size(-2): k = repeat_kv(k, q.size(-2) // k.size(-2)) v = repeat_kv(v, q.size(-2) // v.size(-2)) output = torch.empty_like(q) for head in range(q.size(-2)): q_head = q[:, head, :].unsqueeze(1) k_head = k[:, head, :].unsqueeze(1) v_head = v[:, head, :].unsqueeze(1) # (1, seq_len, num_heads, head_size) q_head = q_head[None, ...] k_head = k_head[None, ...] v_head = v_head[None, ...] q_head = q_head.transpose(1, 2) k_head = k_head.transpose(1, 2) v_head = v_head.transpose(1, 2) out = self.gather_last_q_vertical_slash_topk_vllm(q_head, k_head, v_head, head) out = out.transpose(1, 2).squeeze(0).contiguous() output[:, head:head+1, :] = out return output num_tokens, hidden_size = query.shape # Reshape the query, key, and value tensors. query = query.view(-1, self.num_heads, self.head_size) key = key.view(-1, self.num_kv_heads, self.head_size) value = value.view(-1, self.num_kv_heads, self.head_size) if kv_cache is not None: key_cache, value_cache = PagedAttention.split_kv_cache( kv_cache, self.num_kv_heads, self.head_size) # Reshape the input keys and values and store them in the cache. # If kv_cache is not provided, the new key and value tensors are # not cached. This happens during the initial memory profiling run. PagedAttention.write_to_paged_cache(key, value, key_cache, value_cache, attn_metadata.slot_mapping, attn_metadata.kv_cache_dtype, kv_scale) num_prefill_tokens = attn_metadata.num_prefill_tokens num_decode_tokens = attn_metadata.num_decode_tokens assert key.shape[0] == num_prefill_tokens + num_decode_tokens assert value.shape[0] == num_prefill_tokens + num_decode_tokens output = torch.empty_like(query) # Query for decode. KV is not needed because it is already cached. decode_query = query[num_prefill_tokens:] # QKV for prefill. query = query[:num_prefill_tokens] key = key[:num_prefill_tokens] value = value[:num_prefill_tokens] assert query.shape[0] == num_prefill_tokens assert decode_query.shape[0] == num_decode_tokens if prefill_meta := attn_metadata.prefill_metadata: # Prompt run. if kv_cache is None or prefill_meta.block_tables.numel() == 0: # normal attention # When block_tables are not filled, it means q and k are the # prompt, and they have the same length. # (seq_len, num_heads, head_size) # out = flash_attn_varlen_func( # q=query, # k=key, # v=value, # cu_seqlens_q=prefill_meta.seq_start_loc, # cu_seqlens_k=prefill_meta.seq_start_loc, # max_seqlen_q=prefill_meta.max_prompt_len, # max_seqlen_k=prefill_meta.max_prompt_len, # softmax_scale=self.scale, # causal=True, # window_size=self.sliding_window, # alibi_slopes=self.alibi_slopes, # ) out = minference_prefill_func(query, key, value) assert output[:num_prefill_tokens].shape == out.shape output[:num_prefill_tokens] = out else: # prefix-enabled attention # TODO(Hai) this triton kernel has regression issue (broke) to # deal with different data types between KV and FP8 KV cache, # to be addressed separately. output[:num_prefill_tokens] = PagedAttention.forward_prefix( query, key, value, key_cache, value_cache, prefill_meta.block_tables, prefill_meta.subquery_start_loc, prefill_meta.prompt_lens_tensor, prefill_meta.context_lens, prefill_meta.max_subquery_len, self.alibi_slopes, ) if decode_meta := attn_metadata.decode_metadata: # Decoding run. output[num_prefill_tokens:] = PagedAttention.forward_decode( decode_query, key_cache, value_cache, decode_meta.block_tables, decode_meta.context_lens, decode_meta.max_context_len, attn_metadata.kv_cache_dtype, self.num_kv_heads, self.scale, self.alibi_slopes, kv_scale, ) # Reshape the output tensor. return output.view(num_tokens, hidden_size) return forward