import torch import numpy as np import triton import triton.language as tl import pycuda.autoprimaryctx from pycuda.compiler import SourceModule from flash_attn import flash_attn_varlen_func # @triton.autotune( # configs=[ # triton.Config({}, num_stages=1, num_warps=4), # triton.Config({}, num_stages=1, num_warps=8), # triton.Config({}, num_stages=2, num_warps=4), # triton.Config({}, num_stages=2, num_warps=8), # triton.Config({}, num_stages=3, num_warps=4), # triton.Config({}, num_stages=3, num_warps=8), # triton.Config({}, num_stages=4, num_warps=4), # triton.Config({}, num_stages=4, num_warps=8), # triton.Config({}, num_stages=5, num_warps=4), # triton.Config({}, num_stages=5, num_warps=8), # ], # key=['N_CTX'], # ) @triton.jit def triton_block_sparse_attn_kernel( Q, K, V, seqlens, sm_scale, block_index, Out, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vn, stride_vk, stride_oz, stride_oh, stride_om, stride_ok, Z, H, N_CTX, NUM_ROWS, MAX_BLOCKS_PRE_ROW, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, BLOCK_DMODEL: tl.constexpr, dtype: tl.constexpr, ): start_m = tl.program_id(0) off_hz = tl.program_id(1) seqlen = tl.load(seqlens + off_hz // H) if start_m * BLOCK_M >= seqlen: return # initialize offsets offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) offs_d = tl.arange(0, BLOCK_DMODEL) qo_offset = (off_hz // H) * stride_qz + (off_hz % H) * stride_qh kv_offset = (off_hz // H) * stride_kz + (off_hz % H) * stride_kh q_ptrs = Q + qo_offset + offs_m[:, None] * stride_qm + offs_d[None, :] * stride_qk k_ptrs = K + kv_offset + offs_d[:, None] * stride_kk v_ptrs = V + kv_offset + offs_d[None, :] * stride_vk o_ptrs = Out + qo_offset + offs_m[:, None] * stride_om + offs_d[None, :] * stride_ok blocks_ptr = block_index + (off_hz * NUM_ROWS + start_m) * MAX_BLOCKS_PRE_ROW # initialize pointer to m and l m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") l_i = tl.zeros([BLOCK_M], dtype=tl.float32) acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) # scale sm_scale by log_2(e) and use # 2^x instead of exp in the loop because CSE and LICM # don't work as expected with `exp` in the loop qk_scale = sm_scale * 1.44269504 # load q: it will stay in SRAM throughout q = tl.load(q_ptrs) q = (q * qk_scale).to(dtype) # loop over k, v and update accumulator m_mask = offs_m[:, None] < seqlen block_count = tl.minimum((start_m + 1) * BLOCK_M // BLOCK_N, MAX_BLOCKS_PRE_ROW) for sparse_block_idx in range(block_count): real_block_idx = tl.load(blocks_ptr + sparse_block_idx) start_n = real_block_idx * BLOCK_N cols = start_n + offs_n # -- load k, v -- k = tl.load(k_ptrs + cols[None, :] * stride_kn) v = tl.load(v_ptrs + cols[:, None] * stride_vn) # -- compute qk -- qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) # if start_n + BLOCK_N < seqlen: # qk = tl.where(m_mask, qk, float("-inf")) # else: causal_mask = cols[None, :] <= offs_m[:, None] qk = tl.where(m_mask & causal_mask, qk, float("-inf")) qk += tl.dot(q, k) # -- compute scaling constant -- m_i_new = tl.maximum(m_i, tl.max(qk, 1)) alpha = tl.math.exp2(m_i - m_i_new) p = tl.math.exp2(qk - m_i_new[:, None]) # -- scale and update acc -- acc_scale = l_i * 0 + alpha # workaround some compiler bug acc *= acc_scale[:, None] acc += tl.dot(p.to(dtype), v) # -- update m_i and l_i -- l_i = l_i * alpha + tl.sum(p, 1) m_i = m_i_new # write back O acc /= l_i[:, None] tl.store(o_ptrs, acc.to(dtype), mask=m_mask) def triton_block_sparse_forward( q, # [BATCH, N_HEADS, N_CTX, D_HEAD] k, # [BATCH, N_HEADS, N_CTX, D_HEAD] v, # [BATCH, N_HEADS, N_CTX, D_HEAD] seqlens, # [BATCH, ] block_index, # [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M), MAX_BLOCKS_PRE_ROW] sm_scale, block_size_M=64, block_size_N=64, ) -> torch.Tensor: # shape constraints Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1] assert Lq == Lk and Lk == Lv assert Lk in {16, 32, 64, 128} o = torch.zeros_like(q) grid = (triton.cdiv(q.shape[2], block_size_M), q.shape[0] * q.shape[1], 1) dtype = tl.bfloat16 if q.dtype == torch.bfloat16 else tl.float16 triton_block_sparse_attn_kernel[grid]( q, k, v, seqlens, sm_scale, block_index, o, q.stride(0), q.stride(1), q.stride(2), q.stride(3), k.stride(0), k.stride(1), k.stride(2), k.stride(3), v.stride(0), v.stride(1), v.stride(2), v.stride(3), o.stride(0), o.stride(1), o.stride(2), o.stride(3), q.shape[0], q.shape[1], q.shape[2], block_index.shape[-2], block_index.shape[-1], BLOCK_M=block_size_M, BLOCK_N=block_size_N, BLOCK_DMODEL=Lk, dtype=dtype, num_warps=4, num_stages=2, ) return o def torch_build_index( query: torch.Tensor, # [BATCH, N_HEADS, N_CTX, D_HEAD] key: torch.Tensor, # [BATCH, N_HEADS, N_CTX, D_HEAD] top_k: int, block_size_M: int = 64, block_size_N: int = 64, ): batch_size, num_heads, context_size, head_dim = query.shape query_pool = query.reshape((batch_size, num_heads, -1, block_size_M, head_dim)).mean(dim=-2) key_pool = key.reshape((batch_size, num_heads, -1, block_size_N, head_dim)).mean(dim=-2) arange_M = torch.arange(query_pool.shape[-2], dtype=torch.int32, device=query.device) * block_size_M arange_N = torch.arange(key_pool.shape[-2], dtype=torch.int32, device=key.device) * block_size_N p_pool = torch.einsum(f'bhmk, bhnk -> bhmn', query_pool, key_pool) p_pool = p_pool.where(arange_M[None, None, :, None] >= arange_N[None, None, None, :], -torch.inf) top_k = min(top_k, context_size // block_size_N) return torch.topk(p_pool, top_k, dim=-1).indices.to(torch.int32).sort(dim=-1).values def make_causal_mask(seqlens, device, context_size): batch_size = seqlens.shape[0] arange = torch.arange(context_size, dtype=torch.int32, device=device) causal_mask = arange[None, None, :, None] >= arange[None, None, None, :] causal_mask = causal_mask.repeat((batch_size, 1, 1, 1)) for b, seqlen in enumerate(seqlens): causal_mask[b, :, seqlen:, :] = False causal_mask[b, :, :, seqlen:] = False return causal_mask def make_block_mask(block_index, causal_mask, device, block_size_M=64, block_size_N=64): batch_size, num_heads, num_rows, max_blocks_per_row = block_index.shape context_size = causal_mask.shape[-1] block_mask = torch.zeros((batch_size, num_heads, context_size, context_size), dtype=torch.bool, device=device) for b in range(batch_size): for h in range(num_heads): for i in range(num_rows): start_m = i * block_size_M end_m = start_m + block_size_M for j in range(max_blocks_per_row): real_j = block_index[b, h, i, j] start_n = real_j * block_size_N end_n = start_n + block_size_N block_mask[b, h, start_m:end_m, start_n:end_n] = True block_mask.logical_and_(causal_mask) return block_mask def plot_mask(mask, name, batch=0, head=0): import matplotlib.pyplot as plt import seaborn as sns plt.figure(figsize=(16, 12)) plt.clf() mask = mask[batch, head].cpu().numpy() sns.heatmap(mask) plt.savefig(name) @triton.jit def triton_dense_fwd_kernel( Q, K, V, seqlens, sm_scale, Out, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vn, stride_vk, stride_oz, stride_oh, stride_om, stride_ok, Z, H, N_CTX, BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr, dtype: tl.constexpr, ): start_m = tl.program_id(0) off_hz = tl.program_id(1) seqlen = tl.load(seqlens + off_hz // H) if start_m * BLOCK_M >= seqlen: return qo_offset = (off_hz // H) * stride_qz + (off_hz % H) * stride_qh kv_offset = (off_hz // H) * stride_kz + (off_hz % H) * stride_kh Q_block_ptr = tl.make_block_ptr( base=Q + qo_offset, shape=(N_CTX, BLOCK_DMODEL), strides=(stride_qm, stride_qk), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_DMODEL), order=(1, 0) ) K_block_ptr = tl.make_block_ptr( base=K + kv_offset, shape=(BLOCK_DMODEL, N_CTX), strides=(stride_kk, stride_kn), offsets=(0, 0), block_shape=(BLOCK_DMODEL, BLOCK_N), order=(0, 1) ) V_block_ptr = tl.make_block_ptr( base=V + kv_offset, shape=(N_CTX, BLOCK_DMODEL), strides=(stride_vn, stride_vk), offsets=(0, 0), block_shape=(BLOCK_N, BLOCK_DMODEL), order=(1, 0) ) # initialize offsets offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) # initialize pointer to m and l m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") l_i = tl.zeros([BLOCK_M], dtype=tl.float32) acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) # scale sm_scale by log_2(e) and use # 2^x instead of exp in the loop because CSE and LICM # don't work as expected with `exp` in the loop qk_scale = sm_scale * 1.44269504 # load q: it will stay in SRAM throughout q = tl.load(Q_block_ptr) q = (q * qk_scale).to(dtype) # loop over k, v and update accumulator lo = 0 hi = (start_m + 1) * BLOCK_M m_mask = offs_m[:, None] < seqlen for start_n in range(lo, hi, BLOCK_N): n_mask = (start_n + offs_n[None, :]) <= offs_m[:, None] # -- load k, v -- k = tl.load(K_block_ptr) v = tl.load(V_block_ptr) # -- compute qk -- qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) qk = tl.where(m_mask & n_mask, qk, float("-inf")) qk += tl.dot(q, k) # -- compute scaling constant -- m_i_new = tl.maximum(m_i, tl.max(qk, 1)) alpha = tl.math.exp2(m_i - m_i_new) p = tl.math.exp2(qk - m_i_new[:, None]) # -- scale and update acc -- acc_scale = l_i * 0 + alpha # workaround some compiler bug acc *= acc_scale[:, None] acc += tl.dot(p.to(dtype), v) # -- update m_i and l_i -- l_i = l_i * alpha + tl.sum(p, 1) m_i = m_i_new # update pointers K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N)) V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0)) # write back O acc = tl.where(m_mask, acc / l_i[:, None], 0.0) O_block_ptr = tl.make_block_ptr( base=Out + qo_offset, shape=(N_CTX, BLOCK_DMODEL), strides=(stride_om, stride_ok), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_DMODEL), order=(1, 0) ) tl.store(O_block_ptr, acc.to(dtype)) def triton_dense_forward(q, k, v, seqlens, sm_scale, block_size_M=128, block_size_N=64) -> torch.Tensor: # shape constraints Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1] assert Lq == Lk and Lk == Lv assert Lk in {16, 32, 64, 128} o = torch.zeros_like(q) grid = (triton.cdiv(q.shape[2], block_size_M), q.shape[0] * q.shape[1], 1) num_warps = 4 if Lk <= 64 else 8 # 4 dtype = tl.bfloat16 if q.dtype == torch.bfloat16 else tl.float16 triton_dense_fwd_kernel[grid]( q, k, v, seqlens, sm_scale, o, q.stride(0), q.stride(1), q.stride(2), q.stride(3), k.stride(0), k.stride(1), k.stride(2), k.stride(3), v.stride(0), v.stride(1), v.stride(2), v.stride(3), o.stride(0), o.stride(1), o.stride(2), o.stride(3), q.shape[0], q.shape[1], q.shape[2], BLOCK_M=block_size_M, BLOCK_N=block_size_N, BLOCK_DMODEL=Lk, dtype=dtype, num_warps=num_warps, num_stages=4, ) return o def flash_attn_forward(q, k, v, seqlens, sm_scale, context_size) -> torch.Tensor: return flash_attn_varlen_func( q, k, v, cu_seqlens_q=seqlens, cu_seqlens_k=seqlens, max_seqlen_q=context_size, max_seqlen_k=context_size, dropout_p=0.0, softmax_scale=sm_scale, causal=True, ) def torch_forward( query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, mask: torch.Tensor, sm_scale: float, ) -> torch.Tensor: p = torch.einsum(f'bhmk, bhnk -> bhmn', query, key) * sm_scale p = p.where(mask, -torch.inf) p_max = p.max(-1, keepdim=True).values p_max = torch.where(p_max < 0, 0.0, p_max) p_exp = torch.exp(p - p_max) s = p_exp / (p_exp.sum(-1, keepdim=True) + 1e-6) out = torch.einsum(f'bhmn, bhnk -> bhmk', s, value) return out def profile(fn, total_flops, tag, warmup=25, rep=100): ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep) gflops = total_flops / ms * 1e-9 print(f'{tag}: {ms:.3f} ms | {gflops:.3f} GFLOP/s') def test_flash_attention( seqlens=None, dtype=torch.float16, device="cuda", torch_test=True, batch_size=4, num_heads=32, context_size=1024, head_dim=128, top_k=5, block_size_M=64, block_size_N=64, ): print('========================================') print(f'BATCH={batch_size}, N_CTX={context_size}, N_HEADS={num_heads}, D_HEAD={head_dim}') q = torch.randn((batch_size, num_heads, context_size, head_dim), dtype=dtype, device=device) k = torch.randn((batch_size, num_heads, context_size, head_dim), dtype=dtype, device=device) v = torch.randn((batch_size, num_heads, context_size, head_dim), dtype=dtype, device=device) if seqlens is None: seqlens = torch.randint(context_size // 2, context_size, (batch_size, ), dtype=torch.int32, device=device) else: seqlens = torch.tensor(seqlens, dtype=torch.int32, device=device) dense_mask_nnz = seqlens.to(torch.float32).square().sum().item() * num_heads / 2 sm_scale = head_dim ** -0.5 causal_mask = make_causal_mask(seqlens, device, context_size) if torch_test: ref_o_dense = torch_forward(q, k, v, causal_mask, sm_scale) block_index = torch_build_index(q, k, top_k, block_size_M, block_size_N) arange_M = torch.arange(block_index.shape[-2], device=device) block_index_mask = arange_M[None, None, :, None] * block_size_M >= block_index * block_size_N sparse_mask_nnz = block_index_mask.to(torch.float32).sum().item() * block_size_M * block_size_N print(f'block mask sparsity: {1 - sparse_mask_nnz / dense_mask_nnz}') torch_build_index_fn = lambda: torch_build_index(q, k, top_k, block_size_M, block_size_N) profile(torch_build_index_fn, 0., 'torch-index') if torch_test: block_mask = make_block_mask(block_index, causal_mask, device, block_size_M, block_size_N) ref_o_sparse = torch_forward(q, k, v, block_mask, sm_scale) triton_dense_fn = lambda: triton_dense_forward(q, k, v, seqlens, sm_scale) output = triton_dense_fn() if torch_test: torch.testing.assert_close(output, ref_o_dense, atol=1e-2, rtol=0) profile(triton_dense_fn, 2. * head_dim * dense_mask_nnz, 'triton-dense') triton_sparse_fn = lambda: triton_block_sparse_forward(q, k, v, seqlens, block_index, sm_scale, block_size_M, block_size_N) output = triton_sparse_fn() if torch_test: torch.testing.assert_close(output, ref_o_sparse, atol=1e-2, rtol=0) profile(triton_sparse_fn, 2. * head_dim * sparse_mask_nnz, 'triton-sparse') q = q.swapaxes(1, 2).contiguous() k = k.swapaxes(1, 2).contiguous() v = v.swapaxes(1, 2).contiguous() q = torch.concatenate([q[i, :seqlen, :, :] for i, seqlen in enumerate(seqlens)]) k = torch.concatenate([k[i, :seqlen, :, :] for i, seqlen in enumerate(seqlens)]) v = torch.concatenate([v[i, :seqlen, :, :] for i, seqlen in enumerate(seqlens)]) seqlens = torch.nn.functional.pad(torch.cumsum(seqlens, dim=0, dtype=torch.int32), (1, 0)) flash_fn = lambda: flash_attn_forward(q, k, v, seqlens, sm_scale, context_size) output = flash_fn() output = torch.stack([ torch.nn.functional.pad( output[seqlens[i]:seqlens[i + 1], :, :], (0, 0, 0, 0, 0, context_size + seqlens[i] - seqlens[i + 1]) ) for i in range(batch_size) ]).swapaxes(1, 2).contiguous() if torch_test: torch.testing.assert_close(output, ref_o_dense, atol=1e-2, rtol=0) profile(flash_fn, 2. * head_dim * dense_mask_nnz, 'flash-dense') print('========================================\n') def block_sparse_attention( query: torch.Tensor, # [BATCH, N_HEADS, N_CTX, D_HEAD] key: torch.Tensor, # [BATCH, N_HEADS, N_CTX, D_HEAD] value: torch.Tensor, # [BATCH, N_HEADS, N_CTX, D_HEAD] top_k: int, block_size_M: int = 64, block_size_N: int = 64, ): batch_size, num_heads, context_size, head_dim = query.shape pad = block_size_M - (query.shape[2] & (block_size_M - 1)) query = torch.nn.functional.pad(query, [0, 0, 0, pad, 0, 0, 0, 0]) key = torch.nn.functional.pad(key, [0, 0, 0, pad, 0, 0, 0, 0]) value = torch.nn.functional.pad(value, [0, 0, 0, pad, 0, 0, 0, 0]) seqlens = torch.tensor([context_size], dtype=torch.int32, device=query.device) sm_scale = head_dim ** -0.5 block_index = torch_build_index(query, key, top_k, block_size_N, block_size_N) out = triton_block_sparse_forward(query, key, value, seqlens, block_index, sm_scale, block_size_M, block_size_N) return out[..., :context_size, :]