import gradio as gr import modin.pandas as pd import torch import numpy as np from PIL import Image from diffusers import LCMScheduler,AutoencoderTiny, AutoPipelineForImage2Image from diffusers.utils import load_image import math import time model_id = "segmind/Segmind-Vega" adapter_id = "segmind/Segmind-VegaRT" device = "cuda" if torch.cuda.is_available() else "cpu" pipe = AutoPipelineForImage2Image.from_pretrained(model_id, torch_dtype=torch.float16) if torch.cuda.is_available() else AutoPipelineForImage2Image.from_pretrained(model_id) pipe.vae = AutoencoderTiny.from_pretrained( "madebyollin/taesd", use_safetensors=True, ) pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) pipe = pipe.to(device) pipe.load_lora_weights(adapter_id) pipe.fuse_lora() def resize(w,h,img): img = img.resize((w,h)) return img def infer(source_img, prompt, steps, seed, Strength): start = time.time() print("开始") img = Image.open(source_img) generator = torch.Generator(device).manual_seed(seed) if int(steps * Strength) < 1: steps = math.ceil(1 / max(0.10, Strength)) w, h = img.size newW = 512 newH = int(h * newW / w) source_image = resize(newW,newH, img) source_image.save('source.png') image = pipe(prompt, image=source_image,width=newW,height=newH, strength=Strength, guidance_scale=0.0, num_inference_steps=steps).images[0] end = time.time() print("步数",steps) print("时间",end-start) return image gr.Interface(fn=infer, inputs=[ gr.Image(sources=["upload", "webcam", "clipboard"], type="filepath", label="Raw Image."), gr.Textbox(label = 'Prompt Input Text. 77 Token (Keyword or Symbol) Maximum'), gr.Slider(1, 5, value = 2, step = 1, label = 'Number of Iterations'), gr.Slider(label = "Seed", minimum = 0, maximum = 987654321987654321, step = 1, randomize = True), gr.Slider(label='Strength', minimum = 0.1, maximum = 1, step = .05, value = .5)], outputs='image', title = "Stable Diffusion XL Turbo Image to Image Pipeline CPU", description = "For more information on Stable Diffusion XL Turbo see https://huggingface.co/stabilityai/sdxl-turbo

Upload an Image, Use your Cam, or Paste an Image. Then enter a Prompt, or let it just do its Thing, then click submit. For more informationon about Stable Diffusion or Suggestions for prompts, keywords, artists or styles see https://github.com/Maks-s/sd-akashic", article = "Code Monkey: Manjushri").queue(max_size=10).launch()