from constants import DEVICE, LCM_DEFAULT_MODEL_OPENVINO from backend.tiny_decoder import get_tiny_decoder_vae_model from typing import Any from backend.device import is_openvino_device from paths import get_base_folder_name if is_openvino_device(): from huggingface_hub import snapshot_download from optimum.intel.openvino.modeling_diffusion import OVBaseModel from optimum.intel.openvino.modeling_diffusion import ( OVStableDiffusionPipeline, OVStableDiffusionImg2ImgPipeline, OVStableDiffusionXLPipeline, OVStableDiffusionXLImg2ImgPipeline, ) from backend.openvino.custom_ov_model_vae_decoder import CustomOVModelVaeDecoder def ov_load_taesd( pipeline: Any, use_local_model: bool = False, ): taesd_dir = snapshot_download( repo_id=get_tiny_decoder_vae_model(pipeline.__class__.__name__), local_files_only=use_local_model, ) pipeline.vae_decoder = CustomOVModelVaeDecoder( model=OVBaseModel.load_model(f"{taesd_dir}/vae_decoder/openvino_model.xml"), parent_model=pipeline, model_dir=taesd_dir, ) def get_ov_text_to_image_pipeline( model_id: str = LCM_DEFAULT_MODEL_OPENVINO, use_local_model: bool = False, ) -> Any: if "xl" in get_base_folder_name(model_id).lower(): pipeline = OVStableDiffusionXLPipeline.from_pretrained( model_id, local_files_only=use_local_model, ov_config={"CACHE_DIR": ""}, device=DEVICE.upper(), ) else: pipeline = OVStableDiffusionPipeline.from_pretrained( model_id, local_files_only=use_local_model, ov_config={"CACHE_DIR": ""}, device=DEVICE.upper(), ) return pipeline def get_ov_image_to_image_pipeline( model_id: str = LCM_DEFAULT_MODEL_OPENVINO, use_local_model: bool = False, ) -> Any: if "xl" in get_base_folder_name(model_id).lower(): pipeline = OVStableDiffusionXLImg2ImgPipeline.from_pretrained( model_id, local_files_only=use_local_model, ov_config={"CACHE_DIR": ""}, device=DEVICE.upper(), ) else: pipeline = OVStableDiffusionImg2ImgPipeline.from_pretrained( model_id, local_files_only=use_local_model, ov_config={"CACHE_DIR": ""}, device=DEVICE.upper(), ) return pipeline