import torch from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDIMInverseScheduler, DPMSolverMultistepScheduler from .unet_2d_condition import UNet2DConditionModel from easydict import EasyDict import numpy as np # For compatibility from utils.latents import get_unscaled_latents, get_scaled_latents, blend_latents from utils import torch_device def load_sd(key="runwayml/stable-diffusion-v1-5", use_fp16=False, load_inverse_scheduler=True): """ Keys: key = "CompVis/stable-diffusion-v1-4" key = "runwayml/stable-diffusion-v1-5" key = "stabilityai/stable-diffusion-2-1-base" Unpack with: ``` model_dict = load_sd(key=key, use_fp16=use_fp16) vae, tokenizer, text_encoder, unet, scheduler, dtype = model_dict.vae, model_dict.tokenizer, model_dict.text_encoder, model_dict.unet, model_dict.scheduler, model_dict.dtype ``` use_fp16: fp16 might have degraded performance """ # run final results in fp32 if use_fp16: dtype = torch.float16 revision = "fp16" else: dtype = torch.float revision = "main" vae = AutoencoderKL.from_pretrained(key, subfolder="vae", revision=revision, torch_dtype=dtype).to(torch_device) tokenizer = CLIPTokenizer.from_pretrained(key, subfolder="tokenizer", revision=revision, torch_dtype=dtype) text_encoder = CLIPTextModel.from_pretrained(key, subfolder="text_encoder", revision=revision, torch_dtype=dtype).to(torch_device) unet = UNet2DConditionModel.from_pretrained(key, subfolder="unet", revision=revision, torch_dtype=dtype).to(torch_device) dpm_scheduler = DPMSolverMultistepScheduler.from_pretrained(key, subfolder="scheduler", revision=revision, torch_dtype=dtype) scheduler = DDIMScheduler.from_pretrained(key, subfolder="scheduler", revision=revision, torch_dtype=dtype) model_dict = EasyDict(vae=vae, tokenizer=tokenizer, text_encoder=text_encoder, unet=unet, scheduler=scheduler, dpm_scheduler=dpm_scheduler, dtype=dtype) if load_inverse_scheduler: inverse_scheduler = DDIMInverseScheduler.from_config(scheduler.config) model_dict.inverse_scheduler = inverse_scheduler return model_dict def encode_prompts(tokenizer, text_encoder, prompts, negative_prompt="", return_full_only=False, one_uncond_input_only=False): if negative_prompt == "": print("Note that negative_prompt is an empty string") text_input = tokenizer( prompts, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt" ) max_length = text_input.input_ids.shape[-1] if one_uncond_input_only: num_uncond_input = 1 else: num_uncond_input = len(prompts) uncond_input = tokenizer([negative_prompt] * num_uncond_input, padding="max_length", max_length=max_length, return_tensors="pt") with torch.no_grad(): uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0] cond_embeddings = text_encoder(text_input.input_ids.to(torch_device))[0] if one_uncond_input_only: return uncond_embeddings, cond_embeddings text_embeddings = torch.cat([uncond_embeddings, cond_embeddings]) if return_full_only: return text_embeddings return text_embeddings, uncond_embeddings, cond_embeddings def process_input_embeddings(input_embeddings): assert isinstance(input_embeddings, (tuple, list)) if len(input_embeddings) == 3: # input_embeddings: text_embeddings, uncond_embeddings, cond_embeddings # Assume `uncond_embeddings` is full (has batch size the same as cond_embeddings) _, uncond_embeddings, cond_embeddings = input_embeddings assert uncond_embeddings.shape[0] == cond_embeddings.shape[0], f"{uncond_embeddings.shape[0]} != {cond_embeddings.shape[0]}" return input_embeddings elif len(input_embeddings) == 2: # input_embeddings: uncond_embeddings, cond_embeddings # uncond_embeddings may have only one item uncond_embeddings, cond_embeddings = input_embeddings if uncond_embeddings.shape[0] == 1: uncond_embeddings = uncond_embeddings.expand(cond_embeddings.shape) # We follow the convention: negative (unconditional) prompt comes first text_embeddings = torch.cat((uncond_embeddings, cond_embeddings), dim=0) return text_embeddings, uncond_embeddings, cond_embeddings else: raise ValueError(f"input_embeddings length: {len(input_embeddings)}")