import gradio as gr import requests import emoji import re import json from thefuzz import process, fuzz import numpy as np import re from string import punctuation import nltk nltk.download('words') from nltk.corpus import words API_URL = "https://api-inference.huggingface.co/models/Dabid/abusive-tagalog-profanity-detection" headers = {"Authorization": "Bearer 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"} def query(text): text = {"inputs": text} response = requests.post(API_URL, headers=headers, json=text) return response.json() def read_text(filename, filetype='txt'): words = [] if filetype == 'txt': with open(filename + '.txt') as file: words = [line.rstrip() for line in file] words = list(set(words)) elif filetype == 'json': with open(filename + '.json') as json_file: words = json.load(json_file) return words contractions = read_text('contractions', 'json') lookup_words = read_text('lookup_words') obj_pronouns = read_text('obj_pronouns') profanities = read_text('profanities', 'json') eng_words = set(words.words()) # TODO check eng words that are tagalog profanities def fuzzy_lookup(tweet): matched_profanity = dict() lookup_profanity = np.concatenate([np.hstack(list(profanities.values())), list(profanities.keys())]) for word in tweet.split(): if word in list(set(eng_words) - set(lookup_profanity)): break scores = [] matched_words = [] word = word.strip(punctuation) processed_word = re.sub("[^a-zA-Z0-9@]", "", word) if len(processed_word) >= 4: # Get fuzzy ratio for lookup_word in lookup_words: score = fuzz.ratio(processed_word, lookup_word) if score >= 70: scores.append(score) matched_words.append(lookup_word) if len(scores) > 0: max_score_index = np.argmax(scores) if matched_words[max_score_index] in lookup_profanity: matched_profanity[word] = matched_words[max_score_index] # Expand Pronouns in Profanities for word, profanity in matched_profanity.items(): word_split = word.split(profanity[-2:]) for pronoun in obj_pronouns: if len(word_split) > 1: if pronoun == word_split[-1]: matched_profanity[word] = profanity + ' ' + pronoun break # Replace each profanities by fuzzy lookup result for word, profanity in matched_profanity.items(): tweet = tweet.replace(word, profanity) for profanity, prof_varations in profanities.items(): if len(prof_varations) > 0: for prof_variant in prof_varations: tweet = tweet.replace(prof_variant, profanity) return tweet, matched_profanity def preprocess(tweet): tweet = tweet.lower() tweet = emoji.replace_emoji(tweet, replace='') # Elongated words conversion tweet = re.sub(r'(.)\1{2,}', r'\1', tweet) row_split = tweet.split() for index, word in enumerate(row_split): # Remove links if 'http' in word: row_split[index] = '' # Unify laugh texts format to 'haha' laugh_texts = ['hahaha', 'wahaha', 'hahaa', 'ahha', 'haaha', 'hahah', 'ahah', 'hha'] if any(x in word for x in laugh_texts): row_split[index] = 'haha' # Combine list of words back to sentence preprocessed_tweet = ' '.join(filter(None, row_split)) # Fuzzy Lookup preprocessed_tweet, matches = fuzzy_lookup(preprocessed_tweet) if len(preprocessed_tweet.split()) == 1: return preprocessed_tweet, matches # Expand Contractions for i in contractions.items(): preprocessed_tweet = re.sub(rf"\b{i[0]}\b", i[1], preprocessed_tweet) return preprocessed_tweet, matches def predict(tweet): preprocessed_tweet, matched_profanity = preprocess(tweet) prediction = query(preprocessed_tweet) if type(prediction) == dict: print(prediction) error_message = prediction['error'] return error_message if bool(matched_profanity) == False: return "No Profanity" prediction = [tuple(i.values()) for i in prediction[0]] prediction = dict((x, y) for x, y in prediction) print("\nTWEET:", tweet) print("DETECTED PROFANITY:", matched_profanity) print("LABELS:", prediction, "\n") return prediction demo = gr.Interface( fn=predict, inputs=[gr.components.Textbox(lines=5, placeholder='Enter your input here', label='INPUT')], outputs=[gr.components.Label(num_top_classes=2, label="PREDICTION")], examples=['Tangina mo naman sobrang yabang mo gago!!😠😤 @davidrafael', 'Napakainit ngayong araw pakshet namaaan!!', 'Napakabagal naman ng wifi tangina #PLDC #HelloDITO', 'Bobo ka ba? napakadali lang nyan eh... 🤡', 'Uy gago laptrip yung nangyare samen kanina HAHAHA😂😂'], ) demo.launch(debug=True)