import gradio as gr import requests import emoji import re import json from thefuzz import process, fuzz import numpy as np import re import nltk nltk.download('words') from nltk.corpus import words API_URL = "https://api-inference.huggingface.co/models/Dabid/abusive-tagalog-profanity-detection" headers = {"Authorization": "Bearer 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"} def query(text): payload = {"inputs": text} response = requests.post(API_URL, headers=headers, json=payload) return response.json() def read_text(filename, filetype='txt'): words = [] if filetype == 'txt': with open(filename + '.txt') as file: words = [line.rstrip() for line in file] words = list(set(words)) elif filetype == 'json': with open(filename + '.json') as json_file: words = json.load(json_file) return words contractions = read_text('contractions', 'json') similar_words = read_text('similar_words') addon_words = read_text('addon_words') profanities_dict = read_text('profanities', 'json') lookup_profanity = np.concatenate([np.hstack(list(profanities_dict.values())), list(profanities_dict.keys())]).tolist() lookup_words = list(set(similar_words).union(set(lookup_profanity))) eng_words = list(set(words.words()) - set(lookup_profanity)) punctuations = re.compile(r'^[^\w#@]+|[^\w#@]+$') def fuzzy_lookup(tweet): matched_profanity = dict() for word in tweet.split(): if word in eng_words: continue scores = [] matched_words = [] matched_word = None # Remove trailing punctuations except # and @ word = punctuations.sub('', word).lower() # Save base word base_word = word # Shortent elongated word word = re.sub(r'(.)\1{2,}', r'\1', word) # Remove # and @ if word.startswith("#") or word.startswith("@"): word = word[1:] # Remove trailing words (mo, ka, pinaka) for addon in addon_words: if word.startswith(addon): word = word[len(addon):] if word.endswith(addon): word = word[:-len(addon)] if len(word) < 4: continue # Get fuzzy ratio for lookup_word in lookup_words: score = fuzz.ratio(word, lookup_word) # Threshold if score >= 70: scores.append(score) matched_words.append(lookup_word) if len(scores) == 0: continue if len(set(scores)) == 1: for matched_word in matched_words: if matched_word in lookup_profanity: matched_word = matched_word break else: # Get matched word with max score max_score_index = np.argmax(scores) matched_word = matched_words[max_score_index] if matched_word not in lookup_profanity: continue for base_profanity, profanity_variations in profanities_dict.items(): if matched_word in profanity_variations or matched_word == base_profanity: # Seperate pronouns for addon in addon_words: if base_word.endswith(addon): base_profanity = base_profanity + " " + addon break matched_profanity[base_word] = base_profanity break return matched_profanity def preprocess(tweet, profanities): tweet = tweet.lower() tweet = emoji.replace_emoji(tweet, replace='') # Replace profanities for base_word, matched_word in profanities.items(): tweet = tweet.replace(base_word, matched_word) # Elongated words conversion tweet = re.sub(r'(.)\1{2,}', r'\1', tweet) row_split = tweet.split() for index, word in enumerate(row_split): # Remove links if 'http' in word: row_split[index] = '' # Unify laugh texts format to 'haha' laugh_texts = ['hahaha', 'wahaha', 'hahaa', 'ahha', 'haaha', 'hahah', 'ahah', 'hha'] if any(x in word for x in laugh_texts): row_split[index] = 'haha' # Combine list of words back to sentence preprocessed_tweet = ' '.join(filter(None, row_split)) if len(preprocessed_tweet.split()) == 1: return preprocessed_tweet # Expand Contractions for i in contractions.items(): preprocessed_tweet = re.sub(rf"\b{i[0]}\b", i[1], preprocessed_tweet) return preprocessed_tweet def predict(tweet): profanities = fuzzy_lookup(tweet) if len(profanities) > 0: preprocessed_tweet = preprocess(tweet, profanities) prediction = query(preprocessed_tweet) if type(prediction) == dict: print(prediction) error_message = prediction['error'] return error_message, {} prediction = prediction[0][0]["label"] print("\nTWEET:", tweet) print("PROCESSED TWEET:", preprocessed_tweet) print("DETECTED PROFANITY:", list(profanities.keys())) print("LABEL:", prediction, "\n") return prediction, list(profanities.keys()) return "No Profanity", {} demo = gr.Interface( fn=predict, inputs=[gr.components.Textbox(lines=5, placeholder='Enter your input here', label='INPUT')], outputs=[gr.components.Text(label="PREDICTION"), gr.JSON(label="PROFANITIES")], examples=['Tangina mo naman sobrang yabang mo gago!!😠😤 @davidrafael', 'Napakainit ngayong araw pakshet namaaan!!', 'Napakabagal naman ng wifi tangina #PLDC #HelloDITO', 'Bobo ka ba? napakadali lang nyan eh... 🤡', 'Uy gago laptrip yung nangyare samen kanina HAHAHA😂😂'], allow_flagging="never", title="Tagalog Profanity Classifier" ) demo.launch(debug=True)