# Import the libraries import os import uuid import joblib import json import gradio as gr import pandas as pd from huggingface_hub import CommitScheduler from pathlib import Path # Run the training script placed in the same directory as app.py # The training script will train and persist a linear regression # model with the filename 'model.joblib' os.system('python train.py') # Load the freshly trained model from disk charge_predictor = joblib.load('model.joblib') # Prepare the logging functionality log_file = Path("logs/") / f"data_{uuid.uuid4()}.json" log_folder = log_file.parent scheduler = CommitScheduler( repo_id="insurance-charge-mlops-logs", # provide a name "insurance-charge-mlops-logs" for the repo_id repo_type="dataset", folder_path=log_folder, path_in_repo="data", every=2 ) # Define the predict function which will take features, convert to dataframe and make predictions using the saved model # the functions runs when 'Submit' is clicked or when a API request is made def insurance_charge_prediction(age, bmi, children, sex, smoker, region): sample = { 'age': age, 'bmi': bmi, 'children': children, 'sex': sex, 'smoker': smoker, 'region': region, } data_point = pd.DataFrame([sample]) prediction = charge_predictor.predict(data_point).tolist() # While the prediction is made, log both the inputs and outputs to a log file # While writing to the log file, ensure that the commit scheduler is locked to avoid parallel # access with scheduler.lock: with log_file.open("a") as f: f.write(json.dumps( { 'age': age, 'bmi': bmi, 'children': children, 'sex': sex, 'smoker': smoker, 'region': region, 'prediction': prediction[0] } )) f.write("\n") return prediction[0] # Set up UI components for input and output age_input = gr.Number(label='age') bmi_input = gr.Number(label='bmi') children_input = gr.Number(label='Number of children') sex_input = gr.Dropdown( ['male', 'female'], label='Sex' ) smoker_input = gr.Dropdown( ['yes', 'no'], label='Smoker' ) region_input = gr.Dropdown( ['southeast', 'southwest', 'northwest', 'northeast'], label='Region' ) model_output = gr.Label(label="Charge predictor") # Create the gradio interface, make title "HealthyLife Insurance Charge Prediction" demo = gr.Interface( fn=insurance_charge_prediction, inputs=[age_input, bmi_input, children_input, sex_input, smoker_input, region_input], outputs=model_output, title="Charge Predictor", description="This API allows you to predict the charge of insurace", allow_flagging="auto", concurrency_limit=8 ) # Launch with a load balancer demo.queue() demo.launch(share=False)