File size: 21,817 Bytes
1d113ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
"""
🫁 Multi-Class Chest X-Ray Detection with Adaptive Sparse Training
4-Class Screening: Normal, Tuberculosis, Pneumonia, COVID-19

Mission:
    This open research tool is being built to help humanity –
    especially patients and clinicians in low-resource settings –
    by providing energy-efficient, explainable AI support for chest
    X-ray screening. It is a digital second opinion, NOT a replacement
    for radiologists or doctors.
"""

import gradio as gr
import torch
import torch.nn as nn
from torchvision import models, transforms
from PIL import Image
import numpy as np
import cv2
import matplotlib.pyplot as plt
from pathlib import Path
import io

# ============================================================================
# Model Setup
# ============================================================================

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


def load_efficientnet_model():
    """
    Build EfficientNet-B2 and load your working 4-class best.pt checkpoint.

    We intentionally keep this simple and very close to the version you
    already confirmed is working, to avoid shape-mismatch issues.
    """
    # Base architecture: EfficientNet-B2
    model = models.efficientnet_b2(weights=None)
    in_features = model.classifier[1].in_features
    model.classifier[1] = nn.Linear(in_features, 4)  # 4 classes

    # Where we expect your weights to live
    candidate_paths = [
        Path("checkpoints/best.pt"),  # HF Space path (from your screenshot)
        Path("best.pt"),              # fallback for local runs
    ]

    last_error = None
    for ckpt_path in candidate_paths:
        if not ckpt_path.exists():
            print(f"⚠️  Checkpoint not found at {ckpt_path}")
            continue

        try:
            print(f"πŸ” Loading weights from: {ckpt_path}")
            state = torch.load(ckpt_path, map_location=device)

            # If it comes from a training script with wrappers
            if isinstance(state, dict):
                if "model_state_dict" in state:
                    state = state["model_state_dict"]
                elif "state_dict" in state:
                    state = state["state_dict"]

            # This is the same idea as your original working call
            missing, unexpected = model.load_state_dict(state, strict=False)
            if missing or unexpected:
                print(f"   ⚠️ Non-critical keys - missing: {missing}, unexpected: {unexpected}")
            print(f"βœ… Model weights successfully loaded from {ckpt_path}")
            model.to(device)
            model.eval()
            return model
        except Exception as e:
            print(f"❌ Could not load from {ckpt_path}: {e}")
            last_error = e

    raise RuntimeError(
        "Could not load EfficientNet-B2 4-class weights from any known path.\n"
        f"Last error: {last_error}"
    )


model = load_efficientnet_model()

# Classes
CLASSES = ["Normal", "Tuberculosis", "Pneumonia", "COVID-19"]
CLASS_COLORS = {
    "Normal": "#2ecc71",       # Green
    "Tuberculosis": "#e74c3c",  # Red
    "Pneumonia": "#f39c12",     # Orange
    "COVID-19": "#9b59b6",      # Purple
}

# Image preprocessing
transform = transforms.Compose(
    [
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize(
            [0.485, 0.456, 0.406],
            [0.229, 0.224, 0.225],
        ),
    ]
)

# ============================================================================
# Grad-CAM Implementation
# ============================================================================


class GradCAM:
    def __init__(self, model, target_layer):
        self.model = model
        self.target_layer = target_layer
        self.gradients = None
        self.activations = None

        def save_gradient(grad):
            self.gradients = grad

        def save_activation(module, input, output):
            self.activations = output.detach()

        # Forward hook: store activations
        target_layer.register_forward_hook(save_activation)
        # Backward hook: store gradients
        target_layer.register_full_backward_hook(
            lambda m, grad_in, grad_out: save_gradient(grad_out[0])
        )

    def generate(self, input_image, target_class=None):
        output = self.model(input_image)

        if target_class is None:
            target_class = output.argmax(dim=1)

        self.model.zero_grad()
        one_hot = torch.zeros_like(output)
        one_hot[0][target_class] = 1
        output.backward(gradient=one_hot, retain_graph=True)

        if self.gradients is None or self.activations is None:
            return None, output

        # Global average pooling over gradients
        weights = self.gradients.mean(dim=(2, 3), keepdim=True)
        cam = (weights * self.activations).sum(dim=1, keepdim=True)
        cam = torch.relu(cam)
        cam = cam.squeeze().cpu().numpy()
        cam = (cam - cam.min()) / (cam.max() - cam.min() + 1e-8)

        return cam, output


# Setup Grad-CAM on the last feature layer
target_layer = model.features[-1]
grad_cam = GradCAM(model, target_layer)

# ============================================================================
# Prediction & Visualization
# ============================================================================


def predict_chest_xray(image, show_gradcam=True):
    """
    Predict disease class from chest X-ray with Grad-CAM visualization.

    Returns:
        - class probabilities dict
        - annotated original image
        - Grad-CAM heatmap image
        - overlay image
        - markdown clinical interpretation
    """
    if image is None:
        return None, None, None, None, "Please upload a chest X-ray."

    # Convert to PIL if needed
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image).convert("RGB")
    else:
        image = image.convert("RGB")

    # Keep original for visualization
    original_img = image.copy()

    # Preprocess
    input_tensor = transform(image).unsqueeze(0).to(device)

    # Forward + optional Grad-CAM
    with torch.set_grad_enabled(show_gradcam):
        if show_gradcam:
            cam, output = grad_cam.generate(input_tensor)
        else:
            cam = None
            output = model(input_tensor)

    # Probabilities
    probs = torch.softmax(output, dim=1)[0].cpu().detach().numpy()
    prob_sum = float(np.sum(probs))
    if not (0.99 <= prob_sum <= 1.01):
        print(f"⚠️ Probability sum is {prob_sum:.4f}, expected ~1.0 – check model weights.")

    pred_class = int(output.argmax(dim=1).item())
    pred_label = CLASSES[pred_class]
    confidence = float(probs[pred_class] * 100.0)

    # Ensure values between 0–100
    results = {
        CLASSES[i]: float(min(100.0, max(0.0, probs[i] * 100.0)))
        for i in range(len(CLASSES))
    }

    # Visualizations
    original_pil = create_original_display(original_img, pred_label, confidence)

    if cam is not None and show_gradcam:
        gradcam_viz = create_gradcam_visualization(
            original_img, cam, pred_label, confidence
        )
        overlay_viz = create_overlay_visualization(original_img, cam)
    else:
        gradcam_viz = None
        overlay_viz = None

    # Interpretation text
    interpretation = create_interpretation(pred_label, confidence, results)

    return results, original_pil, gradcam_viz, overlay_viz, interpretation


def create_original_display(image, pred_label, confidence):
    """Create annotated original image."""
    fig, ax = plt.subplots(figsize=(8, 8))
    ax.imshow(image)
    ax.axis("off")

    color = CLASS_COLORS[pred_label]
    title = f"Prediction: {pred_label}\nConfidence: {confidence:.1f}%"
    ax.set_title(title, fontsize=16, fontweight="bold", color=color, pad=20)

    plt.tight_layout()
    buf = io.BytesIO()
    plt.savefig(
        buf,
        format="png",
        dpi=150,
        bbox_inches="tight",
        facecolor="white",
    )
    plt.close()
    buf.seek(0)

    return Image.open(buf)


def create_gradcam_visualization(image, cam, pred_label, confidence):
    """Create Grad-CAM heatmap."""
    img_array = np.array(image.resize((224, 224)))
    cam_resized = cv2.resize(cam, (224, 224))

    heatmap = cv2.applyColorMap(np.uint8(255 * cam_resized), cv2.COLORMAP_JET)
    heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)

    fig, ax = plt.subplots(figsize=(8, 8))
    ax.imshow(heatmap)
    ax.axis("off")
    ax.set_title(
        "Attention Heatmap\n(Areas the model focuses on)",
        fontsize=14,
        fontweight="bold",
        pad=20,
    )

    plt.tight_layout()
    buf = io.BytesIO()
    plt.savefig(
        buf,
        format="png",
        dpi=150,
        bbox_inches="tight",
        facecolor="white",
    )
    plt.close()
    buf.seek(0)

    return Image.open(buf)


def create_overlay_visualization(image, cam):
    """Overlay original image and Grad-CAM heatmap."""
    img_array = np.array(image.resize((224, 224))) / 255.0
    cam_resized = cv2.resize(cam, (224, 224))

    heatmap = cv2.applyColorMap(np.uint8(255 * cam_resized), cv2.COLORMAP_JET)
    heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB) / 255.0

    overlay = img_array * 0.5 + heatmap * 0.5
    overlay = np.clip(overlay, 0, 1)

    fig, ax = plt.subplots(figsize=(8, 8))
    ax.imshow(overlay)
    ax.axis("off")
    ax.set_title(
        "Explainable AI Visualization\n(Original + Heatmap)",
        fontsize=14,
        fontweight="bold",
        pad=20,
    )

    plt.tight_layout()
    buf = io.BytesIO()
    plt.savefig(
        buf,
        format="png",
        dpi=150,
        bbox_inches="tight",
        facecolor="white",
    )
    plt.close()
    buf.seek(0)

    return Image.open(buf)


def create_interpretation(pred_label, confidence, results):
    """
    Clinical-style interpretation text with strong global-health framing
    and strict medical disclaimer.
    """

    interpretation = f"""
## 🫁 AI Chest X-Ray Screening – Global Health Edition
This tool is part of an open effort to **support clinicians and patients worldwide**,
especially in places where radiologists are scarce.

---

## πŸ”¬ Analysis Summary
**Predicted class:** **{pred_label}**  
**Model confidence:** **{confidence:.1f}%**

### Probability Breakdown
- 🟒 Normal: **{results['Normal']:.1f}%**
- πŸ”΄ Tuberculosis: **{results['Tuberculosis']:.1f}%**
- 🟠 Pneumonia: **{results['Pneumonia']:.1f}%**
- 🟣 COVID-19: **{results['COVID-19']:.1f}%**

---
"""

    # Disease-specific details
    if pred_label == "Tuberculosis":
        if confidence >= 85:
            interpretation += """
### ⚠️ High-Confidence Tuberculosis Pattern Detected

The AI model has found features strongly suggestive of **pulmonary tuberculosis (TB)**.

**Suggested next steps for a clinical team (NOT automatic orders):**
1. Correlate with symptoms:
   - Cough > 2 weeks
   - Night sweats, fever
   - Weight loss
   - Hemoptysis (coughing blood)
2. Order **confirmatory TB tests**:
   - Sputum smear / culture
   - GeneXpert MTB/RIF or TB-PCR
3. Consider **isolation** and **contact screening** if TB is suspected.
4. Evaluate HIV status and comorbidities according to local guidelines.

➑️ This system is designed to **support TB programs** in low-resource settings,
where early triage can save lives.
"""
        else:
            interpretation += """
### ⚠️ Possible Tuberculosis Features

The model sees **TB-like patterns**, but confidence is moderate.

**Recommended clinical follow-up (not automatic diagnosis):**
- Detailed history and physical examination
- Evaluate TB risk factors and symptoms
- Consider sputum-based TB testing
- Repeat imaging or CT if clinically indicated
"""

    elif pred_label == "Pneumonia":
        if confidence >= 85:
            interpretation += """
### ⚠️ High-Confidence Pneumonia Pattern

The model detects findings consistent with **pneumonia**.

**Clinical team may consider:**
- Distinguishing bacterial vs viral pneumonia
- Correlating with:
  - Fever, cough, sputum
  - Pleuritic chest pain
  - Shortness of breath
- Laboratory tests (WBC, CRP, cultures)
- Guideline-based antibiotic or supportive therapy if confirmed

This tool aims to **prioritize patients** for rapid review, especially
where waiting times are long.
"""
        else:
            interpretation += """
### ⚠️ Possible Pneumonia

The chest X-ray may show **subtle or early pneumonia-like changes**.

**Clinical suggestions:**
- Evaluate symptoms and vital signs
- Consider repeat imaging or further labs
- Use local pneumonia treatment guidelines if diagnosis is confirmed
"""

    elif pred_label == "COVID-19":
        if confidence >= 85:
            interpretation += """
### ⚠️ High-Confidence COVID-19 Pneumonia Pattern

The AI sees a pattern often associated with **COVID-19 pneumonia**.

**Clinical next steps typically include:**
- **SARS-CoV-2 testing** (RT-PCR or antigen)
- Isolation and infection prevention
- Monitoring oxygen saturation (SpO2)
- Urgent care if:
  - SpO2 < 94%
  - Respiratory distress
  - Persistent chest pain or confusion

Imaging alone **cannot confirm COVID-19**. Lab testing + clinical judgment are essential.
"""
        else:
            interpretation += """
### ⚠️ Possible COVID-19 Pattern

There are features that *could* be compatible with COVID-19, but the AI is not very certain.

**Clinical suggestions:**
- Follow local COVID-19 testing protocols
- Use symptoms and exposure history
- Monitor for deterioration and hypoxia
"""

    else:  # Normal
        if confidence >= 85:
            interpretation += """
### βœ… High-Confidence "No Major Abnormality" Pattern

The model does **not** see strong evidence of TB, pneumonia, or COVID-19.

This may support a **normal chest X-ray**, but:

- Early disease can be radiographically subtle
- Some lung or cardiac diseases are **not detectable** here
- Symptoms always override AI reassurance

If a patient is symptomatic, clinical review is still required.
"""
        else:
            interpretation += """
### ⚠️ Likely Normal, But With Low Confidence

The model leans toward a **normal** study, but uncertainty is higher than usual.

- If the patient is unwell, treat this as **inconclusive**
- Consider follow-up imaging or alternative diagnostics
"""

    interpretation += """
---

## 🌍 Built to Help Humanity

This AI system is being developed to:

- Support **front-line clinicians** in low-resource and high-burden regions  
- Provide an **energy-efficient (Adaptive Sparse Training)** screening assistant  
- Help triage patients when **radiologists are not immediately available**

It is **open research**, not a commercial product, and we welcome
feedback from clinicians, researchers, and public health teams.

---

## ⚠️ Critical Medical Disclaimer

- This is a **screening and research tool only** – **NOT** an FDA/CE approved device.
- It does **not** replace radiologists, pulmonologists, or infectious disease experts.
- All decisions about diagnosis and treatment must be made by qualified clinicians.
- Gold-standard confirmation remains:
  - **TB** – sputum tests, culture, GeneXpert, TB-PCR
  - **Pneumonia** – full clinical assessment + labs/imaging
  - **COVID-19** – RT-PCR / validated antigen testing

If there is any doubt, always follow local clinical guidelines and consult a specialist.
"""

    return interpretation

# ============================================================================
# Gradio Interface
# ============================================================================

custom_css = """
#main-container {
    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
    padding: 20px;
}
#title {
    text-align: center;
    color: white;
    font-size: 2.5em;
    font-weight: 800;
    margin-bottom: 10px;
    text-shadow: 2px 2px 4px rgba(0,0,0,0.35);
}
#subtitle {
    text-align: center;
    color: #f5f5ff;
    font-size: 1.1em;
    margin-bottom: 12px;
}
#mission {
    text-align: center;
    color: #ffffff;
    font-size: 0.95em;
    margin-bottom: 24px;
    padding: 14px 18px;
    background: rgba(0,0,0,0.15);
    border-radius: 12px;
    backdrop-filter: blur(12px);
}
#stats {
    text-align: center;
    color: #fff;
    font-size: 0.95em;
    margin-bottom: 30px;
    padding: 12px 16px;
    background: rgba(255,255,255,0.08);
    border-radius: 10px;
}
.gradio-container {
    font-family: "Inter", system-ui, -apple-system, BlinkMacSystemFont, "Segoe UI", sans-serif;
}
#upload-box {
    border: 3px dashed #667eea;
    border-radius: 15px;
    padding: 20px;
    background: rgba(255,255,255,0.97);
}
#results-box {
    background: white;
    border-radius: 15px;
    padding: 20px;
    box-shadow: 0 4px 12px rgba(0,0,0,0.12);
}
.output-image {
    border-radius: 10px;
    box-shadow: 0 2px 6px rgba(0,0,0,0.15);
}
footer {
    text-align: center;
    margin-top: 30px;
    color: white;
    font-size: 0.9em;
}
"""

with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
    gr.HTML(
        """
        <div id="main-container">
            <div id="title">🫁 Global Chest X-Ray Screening AI</div>
            <div id="subtitle">
                4-Class detection β€’ Explainable AI β€’ Adaptive Sparse Training
            </div>
            <div id="mission">
                <b>Mission:</b> Support clinicians and patients worldwide – especially in
                low-resource, high-burden regions – by providing an energy-efficient AI
                assistant for chest X-ray screening. This is a <b>second opinion</b> tool,
                not a replacement for human experts.
            </div>
            <div id="stats">
                <b>Trained on 4 classes:</b> Normal β€’ Tuberculosis β€’ Pneumonia β€’ COVID-19<br/>
                <b>Energy-efficient:</b> Adaptive Sparse Training (AST) – ~89% compute savings (research setting)<br/>
                <b>Use case:</b> Triage & screening support for TB, pneumonia, and COVID-19 programs
            </div>
        </div>
        """
    )

    with gr.Row():
        with gr.Column(scale=1, elem_id="upload-box"):
            gr.Markdown("## πŸ“€ Upload Chest X-Ray")
            image_input = gr.Image(
                type="pil",
                label="Upload X-Ray Image (PA or AP view)",
                elem_classes="output-image",
            )

            show_gradcam = gr.Checkbox(
                value=True,
                label="Enable Grad-CAM (Explainable AI)",
                info="Shows which lung regions the model is focusing on.",
            )

            analyze_btn = gr.Button("πŸ”¬ Analyze X-Ray", variant="primary", size="lg")

            gr.Markdown(
                """
### πŸ“‹ Supported Images
- Chest X-rays (PA or AP view)
- PNG / JPG / JPEG
- Grayscale or RGB

### πŸ’‘ Designed For
- TB & pneumonia screening programs
- Remote / low-resource clinics
- Educational and research use

> ⚠️ Always combine AI output with clinical judgment and lab tests.
                """
            )

        with gr.Column(scale=2, elem_id="results-box"):
            gr.Markdown("## πŸ“Š AI Analysis Results")

            with gr.Row():
                prob_output = gr.Label(
                    label="Prediction Confidence (per class)",
                    num_top_classes=4,
                )

            with gr.Tabs():
                with gr.Tab("Original (Annotated)"):
                    original_output = gr.Image(
                        label="Annotated X-Ray",
                        elem_classes="output-image",
                    )

                with gr.Tab("Grad-CAM Heatmap"):
                    gradcam_output = gr.Image(
                        label="Model Attention Heatmap",
                        elem_classes="output-image",
                    )

                with gr.Tab("Overlay"):
                    overlay_output = gr.Image(
                        label="Explainable AI Overlay",
                        elem_classes="output-image",
                    )

            interpretation_output = gr.Markdown(label="Clinical-Style Interpretation")

    gr.Markdown("## πŸ“ Example X-Rays (for testing only – not real patients)")
    gr.Examples(
        examples=[
            ["examples/normal.png"],
            ["examples/tb.png"],
            ["examples/pneumonia.png"],
            ["examples/covid.png"],
        ],
        inputs=image_input,
        label="Click an example to load it into the app",
    )

    analyze_btn.click(
        fn=predict_chest_xray,
        inputs=[image_input, show_gradcam],
        outputs=[
            prob_output,
            original_output,
            gradcam_output,
            overlay_output,
            interpretation_output,
        ],
    )

    gr.HTML(
        """
        <footer>
            <p>
                <b>🫁 Global Chest X-Ray Screening with Adaptive Sparse Training</b><br/>
                Built as open research to support clinicians and public health teams worldwide.<br/>
                Not a medical device β€’ Not for autonomous diagnosis or treatment decisions.
            </p>
            <p style="font-size: 0.8em; margin-top: 12px;">
                ⚠️ <b>MEDICAL DISCLAIMER:</b> This tool is for research and educational use only.
                All findings must be confirmed by qualified medical professionals using
                appropriate clinical and laboratory standards.
            </p>
        </footer>
        """
    )

if __name__ == "__main__":
    demo.launch(
        share=False,
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True,
    )