Spaces:
Sleeping
Sleeping
Update app/gemini_analyzer.py
Browse files- app/gemini_analyzer.py +41 -53
app/gemini_analyzer.py
CHANGED
|
@@ -1,22 +1,16 @@
|
|
| 1 |
"""
|
| 2 |
-
A
|
| 3 |
|
| 4 |
-
This module
|
| 5 |
-
|
| 6 |
-
- Key entity extraction (e.g., cryptocurrencies).
|
| 7 |
-
- Topic classification.
|
| 8 |
-
- Potential market impact assessment.
|
| 9 |
"""
|
| 10 |
import os
|
| 11 |
import logging
|
| 12 |
import httpx
|
| 13 |
-
import json
|
| 14 |
from typing import Optional, TypedDict, List, Union
|
| 15 |
|
| 16 |
-
# Configure logging
|
| 17 |
logger = logging.getLogger(__name__)
|
| 18 |
|
| 19 |
-
# --- Pydantic-like models for structured output ---
|
| 20 |
class AnalysisResult(TypedDict):
|
| 21 |
sentiment: str
|
| 22 |
sentiment_score: float
|
|
@@ -27,82 +21,76 @@ class AnalysisResult(TypedDict):
|
|
| 27 |
summary: str
|
| 28 |
error: Optional[str]
|
| 29 |
|
| 30 |
-
|
| 31 |
class GeminiAnalyzer:
|
| 32 |
-
"""Manages interaction with the Google Gemini API for deep text analysis."""
|
| 33 |
-
|
| 34 |
API_URL = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-pro-latest:generateContent"
|
| 35 |
|
| 36 |
def __init__(self, client: httpx.AsyncClient, api_key: Optional[str] = None):
|
| 37 |
self.client = client
|
| 38 |
self.api_key = api_key or os.getenv("GEMINI_API_KEY")
|
| 39 |
if not self.api_key:
|
| 40 |
-
raise ValueError("GEMINI_API_KEY is not set.
|
| 41 |
self.params = {"key": self.api_key}
|
| 42 |
self.headers = {"Content-Type": "application/json"}
|
| 43 |
|
| 44 |
def _build_prompt(self, text: str) -> dict:
|
| 45 |
-
"""Creates
|
| 46 |
return {
|
| 47 |
"contents": [{
|
| 48 |
"parts": [{
|
| 49 |
"text": f"""
|
| 50 |
Analyze the following financial text from the cryptocurrency world.
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
Text to analyze: "{text}"
|
| 64 |
"""
|
| 65 |
}]
|
| 66 |
}]
|
| 67 |
}
|
| 68 |
|
| 69 |
-
def
|
| 70 |
-
"""
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
async def analyze_text(self, text: str) -> AnalysisResult:
|
| 83 |
"""Sends text to Gemini and returns a structured analysis."""
|
| 84 |
prompt = self._build_prompt(text)
|
| 85 |
try:
|
| 86 |
-
response = await self.client.post(
|
| 87 |
-
self.API_URL, headers=self.headers, params=self.params, json=prompt, timeout=60.0
|
| 88 |
-
)
|
| 89 |
response.raise_for_status()
|
| 90 |
-
|
| 91 |
full_response = response.json()
|
| 92 |
response_text = full_response["candidates"][0]["content"]["parts"][0]["text"]
|
| 93 |
|
| 94 |
-
# Use
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
if analysis:
|
| 98 |
-
analysis["error"] = None
|
| 99 |
-
return analysis
|
| 100 |
-
else:
|
| 101 |
-
# This will be logged if the helper function fails
|
| 102 |
-
raise ValueError(f"Could not extract valid JSON from Gemini response: {response_text}")
|
| 103 |
|
| 104 |
except Exception as e:
|
| 105 |
-
logger.error(f"❌ Gemini
|
| 106 |
return {
|
| 107 |
"sentiment": "ERROR", "sentiment_score": 0.0, "reason": str(e),
|
| 108 |
"entities": [], "topic": "Unknown", "impact": "Unknown",
|
|
|
|
| 1 |
"""
|
| 2 |
+
A robust, resilient analyzer using the Google Gemini Pro API.
|
| 3 |
|
| 4 |
+
This module prompts Gemini for a simple key-value format and then constructs
|
| 5 |
+
the final JSON object in Python, making it resilient to LLM syntax errors.
|
|
|
|
|
|
|
|
|
|
| 6 |
"""
|
| 7 |
import os
|
| 8 |
import logging
|
| 9 |
import httpx
|
|
|
|
| 10 |
from typing import Optional, TypedDict, List, Union
|
| 11 |
|
|
|
|
| 12 |
logger = logging.getLogger(__name__)
|
| 13 |
|
|
|
|
| 14 |
class AnalysisResult(TypedDict):
|
| 15 |
sentiment: str
|
| 16 |
sentiment_score: float
|
|
|
|
| 21 |
summary: str
|
| 22 |
error: Optional[str]
|
| 23 |
|
|
|
|
| 24 |
class GeminiAnalyzer:
|
|
|
|
|
|
|
| 25 |
API_URL = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-pro-latest:generateContent"
|
| 26 |
|
| 27 |
def __init__(self, client: httpx.AsyncClient, api_key: Optional[str] = None):
|
| 28 |
self.client = client
|
| 29 |
self.api_key = api_key or os.getenv("GEMINI_API_KEY")
|
| 30 |
if not self.api_key:
|
| 31 |
+
raise ValueError("GEMINI_API_KEY is not set.")
|
| 32 |
self.params = {"key": self.api_key}
|
| 33 |
self.headers = {"Content-Type": "application/json"}
|
| 34 |
|
| 35 |
def _build_prompt(self, text: str) -> dict:
|
| 36 |
+
"""Creates a prompt asking for a simple, parsable text format."""
|
| 37 |
return {
|
| 38 |
"contents": [{
|
| 39 |
"parts": [{
|
| 40 |
"text": f"""
|
| 41 |
Analyze the following financial text from the cryptocurrency world.
|
| 42 |
+
Respond using a simple key::value format, with each key-value pair on a new line. Do NOT use JSON.
|
| 43 |
+
|
| 44 |
+
KEYS:
|
| 45 |
+
sentiment:: [POSITIVE, NEGATIVE, or NEUTRAL]
|
| 46 |
+
sentiment_score:: [A float between -1.0 and 1.0]
|
| 47 |
+
reason:: [A brief, one-sentence explanation for the sentiment.]
|
| 48 |
+
entities:: [A comma-separated list of cryptocurrencies mentioned, e.g., Bitcoin, ETH]
|
| 49 |
+
topic:: [One of: Regulation, Partnership, Technical Update, Market Hype, Security, General News]
|
| 50 |
+
impact:: [One of: LOW, MEDIUM, HIGH]
|
| 51 |
+
summary:: [A concise, one-sentence summary of the text.]
|
| 52 |
+
|
| 53 |
+
TEXT TO ANALYZE: "{text}"
|
|
|
|
| 54 |
"""
|
| 55 |
}]
|
| 56 |
}]
|
| 57 |
}
|
| 58 |
|
| 59 |
+
def _parse_structured_text(self, text: str) -> AnalysisResult:
|
| 60 |
+
"""Parses the key::value text response from Gemini into a structured dict."""
|
| 61 |
+
data = {}
|
| 62 |
+
for line in text.splitlines():
|
| 63 |
+
if '::' in line:
|
| 64 |
+
key, value = line.split('::', 1)
|
| 65 |
+
data[key.strip()] = value.strip()
|
| 66 |
+
|
| 67 |
+
# Build the final, validated object
|
| 68 |
+
return {
|
| 69 |
+
"sentiment": data.get("sentiment", "NEUTRAL").upper(),
|
| 70 |
+
"sentiment_score": float(data.get("sentiment_score", 0.0)),
|
| 71 |
+
"reason": data.get("reason", "N/A"),
|
| 72 |
+
"entities": [e.strip() for e in data.get("entities", "").split(',') if e.strip()],
|
| 73 |
+
"topic": data.get("topic", "General News"),
|
| 74 |
+
"impact": data.get("impact", "LOW").upper(),
|
| 75 |
+
"summary": data.get("summary", "Summary not available."),
|
| 76 |
+
"error": None
|
| 77 |
+
}
|
| 78 |
|
| 79 |
async def analyze_text(self, text: str) -> AnalysisResult:
|
| 80 |
"""Sends text to Gemini and returns a structured analysis."""
|
| 81 |
prompt = self._build_prompt(text)
|
| 82 |
try:
|
| 83 |
+
response = await self.client.post(self.API_URL, headers=self.headers, params=self.params, json=prompt, timeout=60.0)
|
|
|
|
|
|
|
| 84 |
response.raise_for_status()
|
| 85 |
+
|
| 86 |
full_response = response.json()
|
| 87 |
response_text = full_response["candidates"][0]["content"]["parts"][0]["text"]
|
| 88 |
|
| 89 |
+
# Use our new, robust parser
|
| 90 |
+
return self._parse_structured_text(response_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
except Exception as e:
|
| 93 |
+
logger.error(f"❌ Gemini API or Parsing Error: {e}")
|
| 94 |
return {
|
| 95 |
"sentiment": "ERROR", "sentiment_score": 0.0, "reason": str(e),
|
| 96 |
"entities": [], "topic": "Unknown", "impact": "Unknown",
|