File size: 1,338 Bytes
1f7c21d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
from mcp.server.fastmcp import FastMCP
import sqlite3
import json
# Initialize MCP server
mcp = FastMCP("EnterpriseData")
# Create in-memory SQLite database
conn = sqlite3.connect(":memory:", check_same_thread=False)
cursor = conn.cursor()
# Create Customers table
cursor.execute("""
CREATE TABLE Customers (
CustomerID INTEGER PRIMARY KEY AUTOINCREMENT,
Name TEXT,
Region TEXT,
LastOrderDate TEXT
)
""")
# Seed sample data
cursor.executemany(
"INSERT INTO Customers (Name, Region, LastOrderDate) VALUES (?, ?, ?)",
[
("Acme Corp", "Northeast", "2024-12-01"),
("Beta Inc", "West", "2025-06-01"),
("Gamma Co", "Northeast", "2023-09-15"),
("Delta LLC", "South", "2025-03-20"),
("Epsilon Ltd", "Northeast", "2025-07-10")
]
)
conn.commit()
# Expose SQL tool to the AI
@mcp.tool()
def query_database(sql: str) -> str:
"""Executes raw SQL and returns JSON results."""
try:
cur = conn.cursor()
cur.execute(sql)
rows = cur.fetchall()
columns = [desc[0] for desc in cur.description or []]
results = [dict(zip(columns, row)) for row in rows]
return json.dumps(results)
except Exception as e:
return json.dumps({"error": str(e)})
# Start MCP server
if __name__ == "__main__":
mcp.run(transport="stdio")
|