import argparse import torch from torch.nn import functional as F import numpy as np from tqdm import tqdm import lpips from model import Generator def normalize(x): return x / torch.sqrt(x.pow(2).sum(-1, keepdim=True)) def slerp(a, b, t): a = normalize(a) b = normalize(b) d = (a * b).sum(-1, keepdim=True) p = t * torch.acos(d) c = normalize(b - d * a) d = a * torch.cos(p) + c * torch.sin(p) return normalize(d) def lerp(a, b, t): return a + (b - a) * t if __name__ == '__main__': device = 'cuda' parser = argparse.ArgumentParser() parser.add_argument('--space', choices=['z', 'w']) parser.add_argument('--batch', type=int, default=64) parser.add_argument('--n_sample', type=int, default=5000) parser.add_argument('--size', type=int, default=256) parser.add_argument('--eps', type=float, default=1e-4) parser.add_argument('--crop', action='store_true') parser.add_argument('ckpt', metavar='CHECKPOINT') args = parser.parse_args() latent_dim = 512 ckpt = torch.load(args.ckpt) g = Generator(args.size, latent_dim, 8).to(device) g.load_state_dict(ckpt['g_ema']) g.eval() percept = lpips.PerceptualLoss( model='net-lin', net='vgg', use_gpu=device.startswith('cuda') ) distances = [] n_batch = args.n_sample // args.batch resid = args.n_sample - (n_batch * args.batch) batch_sizes = [args.batch] * n_batch + [resid] with torch.no_grad(): for batch in tqdm(batch_sizes): noise = g.make_noise() inputs = torch.randn([batch * 2, latent_dim], device=device) lerp_t = torch.rand(batch, device=device) if args.space == 'w': latent = g.get_latent(inputs) latent_t0, latent_t1 = latent[::2], latent[1::2] latent_e0 = lerp(latent_t0, latent_t1, lerp_t[:, None]) latent_e1 = lerp(latent_t0, latent_t1, lerp_t[:, None] + args.eps) latent_e = torch.stack([latent_e0, latent_e1], 1).view(*latent.shape) image, _ = g([latent_e], input_is_latent=True, noise=noise) if args.crop: c = image.shape[2] // 8 image = image[:, :, c * 3 : c * 7, c * 2 : c * 6] factor = image.shape[2] // 256 if factor > 1: image = F.interpolate( image, size=(256, 256), mode='bilinear', align_corners=False ) dist = percept(image[::2], image[1::2]).view(image.shape[0] // 2) / ( args.eps ** 2 ) distances.append(dist.to('cpu').numpy()) distances = np.concatenate(distances, 0) lo = np.percentile(distances, 1, interpolation='lower') hi = np.percentile(distances, 99, interpolation='higher') filtered_dist = np.extract( np.logical_and(lo <= distances, distances <= hi), distances ) print('ppl:', filtered_dist.mean())