import argparse import os import sys import pickle import math import torch import numpy as np from torchvision import utils from model import Generator, Discriminator def convert_modconv(vars, source_name, target_name, flip=False): weight = vars[source_name + '/weight'].value().eval() mod_weight = vars[source_name + '/mod_weight'].value().eval() mod_bias = vars[source_name + '/mod_bias'].value().eval() noise = vars[source_name + '/noise_strength'].value().eval() bias = vars[source_name + '/bias'].value().eval() dic = { 'conv.weight': np.expand_dims(weight.transpose((3, 2, 0, 1)), 0), 'conv.modulation.weight': mod_weight.transpose((1, 0)), 'conv.modulation.bias': mod_bias + 1, 'noise.weight': np.array([noise]), 'activate.bias': bias, } dic_torch = {} for k, v in dic.items(): dic_torch[target_name + '.' + k] = torch.from_numpy(v) if flip: dic_torch[target_name + '.conv.weight'] = torch.flip( dic_torch[target_name + '.conv.weight'], [3, 4] ) return dic_torch def convert_conv(vars, source_name, target_name, bias=True, start=0): weight = vars[source_name + '/weight'].value().eval() dic = {'weight': weight.transpose((3, 2, 0, 1))} if bias: dic['bias'] = vars[source_name + '/bias'].value().eval() dic_torch = {} dic_torch[target_name + f'.{start}.weight'] = torch.from_numpy(dic['weight']) if bias: dic_torch[target_name + f'.{start + 1}.bias'] = torch.from_numpy(dic['bias']) return dic_torch def convert_torgb(vars, source_name, target_name): weight = vars[source_name + '/weight'].value().eval() mod_weight = vars[source_name + '/mod_weight'].value().eval() mod_bias = vars[source_name + '/mod_bias'].value().eval() bias = vars[source_name + '/bias'].value().eval() dic = { 'conv.weight': np.expand_dims(weight.transpose((3, 2, 0, 1)), 0), 'conv.modulation.weight': mod_weight.transpose((1, 0)), 'conv.modulation.bias': mod_bias + 1, 'bias': bias.reshape((1, 3, 1, 1)), } dic_torch = {} for k, v in dic.items(): dic_torch[target_name + '.' + k] = torch.from_numpy(v) return dic_torch def convert_dense(vars, source_name, target_name): weight = vars[source_name + '/weight'].value().eval() bias = vars[source_name + '/bias'].value().eval() dic = {'weight': weight.transpose((1, 0)), 'bias': bias} dic_torch = {} for k, v in dic.items(): dic_torch[target_name + '.' + k] = torch.from_numpy(v) return dic_torch def update(state_dict, new): for k, v in new.items(): if k not in state_dict: raise KeyError(k + ' is not found') if v.shape != state_dict[k].shape: raise ValueError(f'Shape mismatch: {v.shape} vs {state_dict[k].shape}') state_dict[k] = v def discriminator_fill_statedict(statedict, vars, size): log_size = int(math.log(size, 2)) update(statedict, convert_conv(vars, f'{size}x{size}/FromRGB', 'convs.0')) conv_i = 1 for i in range(log_size - 2, 0, -1): reso = 4 * 2 ** i update( statedict, convert_conv(vars, f'{reso}x{reso}/Conv0', f'convs.{conv_i}.conv1'), ) update( statedict, convert_conv( vars, f'{reso}x{reso}/Conv1_down', f'convs.{conv_i}.conv2', start=1 ), ) update( statedict, convert_conv( vars, f'{reso}x{reso}/Skip', f'convs.{conv_i}.skip', start=1, bias=False ), ) conv_i += 1 update(statedict, convert_conv(vars, f'4x4/Conv', 'final_conv')) update(statedict, convert_dense(vars, f'4x4/Dense0', 'final_linear.0')) update(statedict, convert_dense(vars, f'Output', 'final_linear.1')) return statedict def fill_statedict(state_dict, vars, size): log_size = int(math.log(size, 2)) for i in range(8): update(state_dict, convert_dense(vars, f'G_mapping/Dense{i}', f'style.{i + 1}')) update( state_dict, { 'input.input': torch.from_numpy( vars['G_synthesis/4x4/Const/const'].value().eval() ) }, ) update(state_dict, convert_torgb(vars, 'G_synthesis/4x4/ToRGB', 'to_rgb1')) for i in range(log_size - 2): reso = 4 * 2 ** (i + 1) update( state_dict, convert_torgb(vars, f'G_synthesis/{reso}x{reso}/ToRGB', f'to_rgbs.{i}'), ) update(state_dict, convert_modconv(vars, 'G_synthesis/4x4/Conv', 'conv1')) conv_i = 0 for i in range(log_size - 2): reso = 4 * 2 ** (i + 1) update( state_dict, convert_modconv( vars, f'G_synthesis/{reso}x{reso}/Conv0_up', f'convs.{conv_i}', flip=True, ), ) update( state_dict, convert_modconv( vars, f'G_synthesis/{reso}x{reso}/Conv1', f'convs.{conv_i + 1}' ), ) conv_i += 2 for i in range(0, (log_size - 2) * 2 + 1): update( state_dict, { f'noises.noise_{i}': torch.from_numpy( vars[f'G_synthesis/noise{i}'].value().eval() ) }, ) return state_dict if __name__ == '__main__': device = 'cuda' if torch.cuda.is_available() else 'cpu' print('Using PyTorch device', device) parser = argparse.ArgumentParser() parser.add_argument('--repo', type=str, required=True) parser.add_argument('--gen', action='store_true') parser.add_argument('--disc', action='store_true') parser.add_argument('--channel_multiplier', type=int, default=2) parser.add_argument('path', metavar='PATH') args = parser.parse_args() sys.path.append(args.repo) import dnnlib from dnnlib import tflib tflib.init_tf() with open(args.path, 'rb') as f: generator, discriminator, g_ema = pickle.load(f) size = g_ema.output_shape[2] g = Generator(size, 512, 8, channel_multiplier=args.channel_multiplier) state_dict = g.state_dict() state_dict = fill_statedict(state_dict, g_ema.vars, size) g.load_state_dict(state_dict) latent_avg = torch.from_numpy(g_ema.vars['dlatent_avg'].value().eval()) ckpt = {'g_ema': state_dict, 'latent_avg': latent_avg} if args.gen: g_train = Generator(size, 512, 8, channel_multiplier=args.channel_multiplier) g_train_state = g_train.state_dict() g_train_state = fill_statedict(g_train_state, generator.vars, size) ckpt['g'] = g_train_state if args.disc: disc = Discriminator(size, channel_multiplier=args.channel_multiplier) d_state = disc.state_dict() d_state = discriminator_fill_statedict(d_state, discriminator.vars, size) ckpt['d'] = d_state name = os.path.splitext(os.path.basename(args.path))[0] outpath = os.path.join(os.getcwd(), f'{name}.pt') print('Saving', outpath) try: torch.save(ckpt, outpath, _use_new_zipfile_serialization=False) except TypeError: torch.save(ckpt, outpath) print('Generating TF-Torch comparison images') batch_size = {256: 8, 512: 4, 1024: 2} n_sample = batch_size.get(size, 4) g = g.to(device) z = np.random.RandomState(0).randn(n_sample, 512).astype('float32') with torch.no_grad(): img_pt, _ = g( [torch.from_numpy(z).to(device)], truncation=0.5, truncation_latent=latent_avg.to(device), ) img_tf = g_ema.run(z, None, randomize_noise=False) img_tf = torch.from_numpy(img_tf).to(device) img_diff = ((img_pt + 1) / 2).clamp(0.0, 1.0) - ((img_tf.to(device) + 1) / 2).clamp( 0.0, 1.0 ) img_concat = torch.cat((img_tf, img_pt, img_diff), dim=0) utils.save_image( img_concat, name + '.png', nrow=n_sample, normalize=True, range=(-1, 1) ) print('Done')