import torch import torch.nn as nn import torchvision from . import resnet, resnext try: from lib.nn import SynchronizedBatchNorm2d except ImportError: from torch.nn import BatchNorm2d as SynchronizedBatchNorm2d class SegmentationModuleBase(nn.Module): def __init__(self): super(SegmentationModuleBase, self).__init__() def pixel_acc(self, pred, label): _, preds = torch.max(pred, dim=1) valid = (label >= 0).long() acc_sum = torch.sum(valid * (preds == label).long()) pixel_sum = torch.sum(valid) acc = acc_sum.float() / (pixel_sum.float() + 1e-10) return acc class SegmentationModule(SegmentationModuleBase): def __init__(self, net_enc, net_dec, crit, deep_sup_scale=None): super(SegmentationModule, self).__init__() self.encoder = net_enc self.decoder = net_dec self.crit = crit self.deep_sup_scale = deep_sup_scale def forward(self, feed_dict, *, segSize=None): if segSize is None: # training if self.deep_sup_scale is not None: # use deep supervision technique (pred, pred_deepsup) = self.decoder(self.encoder(feed_dict['img_data'], return_feature_maps=True)) else: pred = self.decoder(self.encoder(feed_dict['img_data'], return_feature_maps=True)) loss = self.crit(pred, feed_dict['seg_label']) if self.deep_sup_scale is not None: loss_deepsup = self.crit(pred_deepsup, feed_dict['seg_label']) loss = loss + loss_deepsup * self.deep_sup_scale acc = self.pixel_acc(pred, feed_dict['seg_label']) return loss, acc else: # inference pred = self.decoder(self.encoder(feed_dict['img_data'], return_feature_maps=True), segSize=segSize) return pred def conv3x3(in_planes, out_planes, stride=1, has_bias=False): "3x3 convolution with padding" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=has_bias) def conv3x3_bn_relu(in_planes, out_planes, stride=1): return nn.Sequential( conv3x3(in_planes, out_planes, stride), SynchronizedBatchNorm2d(out_planes), nn.ReLU(inplace=True), ) class ModelBuilder(): # custom weights initialization def weights_init(self, m): classname = m.__class__.__name__ if classname.find('Conv') != -1: nn.init.kaiming_normal_(m.weight.data) elif classname.find('BatchNorm') != -1: m.weight.data.fill_(1.) m.bias.data.fill_(1e-4) #elif classname.find('Linear') != -1: # m.weight.data.normal_(0.0, 0.0001) def build_encoder(self, arch='resnet50_dilated8', fc_dim=512, weights=''): pretrained = True if len(weights) == 0 else False if arch == 'resnet34': raise NotImplementedError orig_resnet = resnet.__dict__['resnet34'](pretrained=pretrained) net_encoder = Resnet(orig_resnet) elif arch == 'resnet34_dilated8': raise NotImplementedError orig_resnet = resnet.__dict__['resnet34'](pretrained=pretrained) net_encoder = ResnetDilated(orig_resnet, dilate_scale=8) elif arch == 'resnet34_dilated16': raise NotImplementedError orig_resnet = resnet.__dict__['resnet34'](pretrained=pretrained) net_encoder = ResnetDilated(orig_resnet, dilate_scale=16) elif arch == 'resnet50': orig_resnet = resnet.__dict__['resnet50'](pretrained=pretrained) net_encoder = Resnet(orig_resnet) elif arch == 'resnet50_dilated8': orig_resnet = resnet.__dict__['resnet50'](pretrained=pretrained) net_encoder = ResnetDilated(orig_resnet, dilate_scale=8) elif arch == 'resnet50_dilated16': orig_resnet = resnet.__dict__['resnet50'](pretrained=pretrained) net_encoder = ResnetDilated(orig_resnet, dilate_scale=16) elif arch == 'resnet101': orig_resnet = resnet.__dict__['resnet101'](pretrained=pretrained) net_encoder = Resnet(orig_resnet) elif arch == 'resnet101_dilated8': orig_resnet = resnet.__dict__['resnet101'](pretrained=pretrained) net_encoder = ResnetDilated(orig_resnet, dilate_scale=8) elif arch == 'resnet101_dilated16': orig_resnet = resnet.__dict__['resnet101'](pretrained=pretrained) net_encoder = ResnetDilated(orig_resnet, dilate_scale=16) elif arch == 'resnext101': orig_resnext = resnext.__dict__['resnext101'](pretrained=pretrained) net_encoder = Resnet(orig_resnext) # we can still use class Resnet else: raise Exception('Architecture undefined!') # net_encoder.apply(self.weights_init) if len(weights) > 0: # print('Loading weights for net_encoder') net_encoder.load_state_dict( torch.load(weights, map_location=lambda storage, loc: storage), strict=False) return net_encoder def build_decoder(self, arch='ppm_bilinear_deepsup', fc_dim=512, num_class=150, weights='', inference=False, use_softmax=False): if arch == 'c1_bilinear_deepsup': net_decoder = C1BilinearDeepSup( num_class=num_class, fc_dim=fc_dim, inference=inference, use_softmax=use_softmax) elif arch == 'c1_bilinear': net_decoder = C1Bilinear( num_class=num_class, fc_dim=fc_dim, inference=inference, use_softmax=use_softmax) elif arch == 'ppm_bilinear': net_decoder = PPMBilinear( num_class=num_class, fc_dim=fc_dim, inference=inference, use_softmax=use_softmax) elif arch == 'ppm_bilinear_deepsup': net_decoder = PPMBilinearDeepsup( num_class=num_class, fc_dim=fc_dim, inference=inference, use_softmax=use_softmax) elif arch == 'upernet_lite': net_decoder = UPerNet( num_class=num_class, fc_dim=fc_dim, inference=inference, use_softmax=use_softmax, fpn_dim=256) elif arch == 'upernet': net_decoder = UPerNet( num_class=num_class, fc_dim=fc_dim, inference=inference, use_softmax=use_softmax, fpn_dim=512) elif arch == 'upernet_tmp': net_decoder = UPerNetTmp( num_class=num_class, fc_dim=fc_dim, inference=inference, use_softmax=use_softmax, fpn_dim=512) else: raise Exception('Architecture undefined!') net_decoder.apply(self.weights_init) if len(weights) > 0: # print('Loading weights for net_decoder') net_decoder.load_state_dict( torch.load(weights, map_location=lambda storage, loc: storage), strict=False) return net_decoder class Resnet(nn.Module): def __init__(self, orig_resnet): super(Resnet, self).__init__() # take pretrained resnet, except AvgPool and FC self.conv1 = orig_resnet.conv1 self.bn1 = orig_resnet.bn1 self.relu1 = orig_resnet.relu1 self.conv2 = orig_resnet.conv2 self.bn2 = orig_resnet.bn2 self.relu2 = orig_resnet.relu2 self.conv3 = orig_resnet.conv3 self.bn3 = orig_resnet.bn3 self.relu3 = orig_resnet.relu3 self.maxpool = orig_resnet.maxpool self.layer1 = orig_resnet.layer1 self.layer2 = orig_resnet.layer2 self.layer3 = orig_resnet.layer3 self.layer4 = orig_resnet.layer4 def forward(self, x, return_feature_maps=False): conv_out = [] x = self.relu1(self.bn1(self.conv1(x))) x = self.relu2(self.bn2(self.conv2(x))) x = self.relu3(self.bn3(self.conv3(x))) x = self.maxpool(x) x = self.layer1(x); conv_out.append(x); x = self.layer2(x); conv_out.append(x); x = self.layer3(x); conv_out.append(x); x = self.layer4(x); conv_out.append(x); if return_feature_maps: return conv_out return [x] class ResnetDilated(nn.Module): def __init__(self, orig_resnet, dilate_scale=8): super(ResnetDilated, self).__init__() from functools import partial if dilate_scale == 8: orig_resnet.layer3.apply( partial(self._nostride_dilate, dilate=2)) orig_resnet.layer4.apply( partial(self._nostride_dilate, dilate=4)) elif dilate_scale == 16: orig_resnet.layer4.apply( partial(self._nostride_dilate, dilate=2)) # take pretrained resnet, except AvgPool and FC self.conv1 = orig_resnet.conv1 self.bn1 = orig_resnet.bn1 self.relu1 = orig_resnet.relu1 self.conv2 = orig_resnet.conv2 self.bn2 = orig_resnet.bn2 self.relu2 = orig_resnet.relu2 self.conv3 = orig_resnet.conv3 self.bn3 = orig_resnet.bn3 self.relu3 = orig_resnet.relu3 self.maxpool = orig_resnet.maxpool self.layer1 = orig_resnet.layer1 self.layer2 = orig_resnet.layer2 self.layer3 = orig_resnet.layer3 self.layer4 = orig_resnet.layer4 def _nostride_dilate(self, m, dilate): classname = m.__class__.__name__ if classname.find('Conv') != -1: # the convolution with stride if m.stride == (2, 2): m.stride = (1, 1) if m.kernel_size == (3, 3): m.dilation = (dilate//2, dilate//2) m.padding = (dilate//2, dilate//2) # other convoluions else: if m.kernel_size == (3, 3): m.dilation = (dilate, dilate) m.padding = (dilate, dilate) def forward(self, x, return_feature_maps=False): conv_out = [] x = self.relu1(self.bn1(self.conv1(x))) x = self.relu2(self.bn2(self.conv2(x))) x = self.relu3(self.bn3(self.conv3(x))) x = self.maxpool(x) x = self.layer1(x); conv_out.append(x); x = self.layer2(x); conv_out.append(x); x = self.layer3(x); conv_out.append(x); x = self.layer4(x); conv_out.append(x); if return_feature_maps: return conv_out return [x] # last conv, bilinear upsample class C1BilinearDeepSup(nn.Module): def __init__(self, num_class=150, fc_dim=2048, inference=False, use_softmax=False): super(C1BilinearDeepSup, self).__init__() self.use_softmax = use_softmax self.inference = inference self.cbr = conv3x3_bn_relu(fc_dim, fc_dim // 4, 1) self.cbr_deepsup = conv3x3_bn_relu(fc_dim // 2, fc_dim // 4, 1) # last conv self.conv_last = nn.Conv2d(fc_dim // 4, num_class, 1, 1, 0) self.conv_last_deepsup = nn.Conv2d(fc_dim // 4, num_class, 1, 1, 0) def forward(self, conv_out, segSize=None): conv5 = conv_out[-1] x = self.cbr(conv5) x = self.conv_last(x) if self.inference or self.use_softmax: # is True during inference x = nn.functional.interpolate( x, size=segSize, mode='bilinear', align_corners=False) if self.use_softmax: x = nn.functional.softmax(x, dim=1) return x # deep sup conv4 = conv_out[-2] _ = self.cbr_deepsup(conv4) _ = self.conv_last_deepsup(_) x = nn.functional.log_softmax(x, dim=1) _ = nn.functional.log_softmax(_, dim=1) return (x, _) # last conv, bilinear upsample class C1Bilinear(nn.Module): def __init__(self, num_class=150, fc_dim=2048, inference=False, use_softmax=False): super(C1Bilinear, self).__init__() self.use_softmax = use_softmax self.inference = inference self.cbr = conv3x3_bn_relu(fc_dim, fc_dim // 4, 1) # last conv self.conv_last = nn.Conv2d(fc_dim // 4, num_class, 1, 1, 0) def forward(self, conv_out, segSize=None): conv5 = conv_out[-1] x = self.cbr(conv5) x = self.conv_last(x) if self.inference or self.use_softmax: # is True during inference x = nn.functional.interpolate( x, size=segSize, mode='bilinear', align_corners=False) if self.use_softmax: x = nn.functional.softmax(x, dim=1) else: x = nn.functional.log_softmax(x, dim=1) return x # pyramid pooling, bilinear upsample class PPMBilinear(nn.Module): def __init__(self, num_class=150, fc_dim=4096, inference=False, use_softmax=False, pool_scales=(1, 2, 3, 6)): super(PPMBilinear, self).__init__() self.use_softmax = use_softmax self.inference = inference self.ppm = [] for scale in pool_scales: self.ppm.append(nn.Sequential( nn.AdaptiveAvgPool2d(scale), nn.Conv2d(fc_dim, 512, kernel_size=1, bias=False), SynchronizedBatchNorm2d(512), nn.ReLU(inplace=True) )) self.ppm = nn.ModuleList(self.ppm) self.conv_last = nn.Sequential( nn.Conv2d(fc_dim+len(pool_scales)*512, 512, kernel_size=3, padding=1, bias=False), SynchronizedBatchNorm2d(512), nn.ReLU(inplace=True), nn.Dropout2d(0.1), nn.Conv2d(512, num_class, kernel_size=1) ) def forward(self, conv_out, segSize=None): conv5 = conv_out[-1] input_size = conv5.size() ppm_out = [conv5] for pool_scale in self.ppm: ppm_out.append(nn.functional.interpolate( pool_scale(conv5), (input_size[2], input_size[3]), mode='bilinear', align_corners=False)) ppm_out = torch.cat(ppm_out, 1) x = self.conv_last(ppm_out) if self.inference or self.use_softmax: # is True during inference x = nn.functional.interpolate( x, size=segSize, mode='bilinear', align_corners=False) if self.use_softmax: x = nn.functional.softmax(x, dim=1) else: x = nn.functional.log_softmax(x, dim=1) return x # pyramid pooling, bilinear upsample class PPMBilinearDeepsup(nn.Module): def __init__(self, num_class=150, fc_dim=4096, inference=False, use_softmax=False, pool_scales=(1, 2, 3, 6)): super(PPMBilinearDeepsup, self).__init__() self.use_softmax = use_softmax self.inference = inference self.ppm = [] for scale in pool_scales: self.ppm.append(nn.Sequential( nn.AdaptiveAvgPool2d(scale), nn.Conv2d(fc_dim, 512, kernel_size=1, bias=False), SynchronizedBatchNorm2d(512), nn.ReLU(inplace=True) )) self.ppm = nn.ModuleList(self.ppm) self.cbr_deepsup = conv3x3_bn_relu(fc_dim // 2, fc_dim // 4, 1) self.conv_last = nn.Sequential( nn.Conv2d(fc_dim+len(pool_scales)*512, 512, kernel_size=3, padding=1, bias=False), SynchronizedBatchNorm2d(512), nn.ReLU(inplace=True), nn.Dropout2d(0.1), nn.Conv2d(512, num_class, kernel_size=1) ) self.conv_last_deepsup = nn.Conv2d(fc_dim // 4, num_class, 1, 1, 0) self.dropout_deepsup = nn.Dropout2d(0.1) def forward(self, conv_out, segSize=None): conv5 = conv_out[-1] input_size = conv5.size() ppm_out = [conv5] for pool_scale in self.ppm: ppm_out.append(nn.functional.interpolate( pool_scale(conv5), (input_size[2], input_size[3]), mode='bilinear', align_corners=False)) ppm_out = torch.cat(ppm_out, 1) x = self.conv_last(ppm_out) if self.inference or self.use_softmax: # is True during inference x = nn.functional.interpolate( x, size=segSize, mode='bilinear', align_corners=False) if self.use_softmax: x = nn.functional.softmax(x, dim=1) return x # deep sup conv4 = conv_out[-2] _ = self.cbr_deepsup(conv4) _ = self.dropout_deepsup(_) _ = self.conv_last_deepsup(_) x = nn.functional.log_softmax(x, dim=1) _ = nn.functional.log_softmax(_, dim=1) return (x, _) # upernet class UPerNet(nn.Module): def __init__(self, num_class=150, fc_dim=4096, inference=False, use_softmax=False, pool_scales=(1, 2, 3, 6), fpn_inplanes=(256,512,1024,2048), fpn_dim=256): super(UPerNet, self).__init__() self.use_softmax = use_softmax self.inference = inference # PPM Module self.ppm_pooling = [] self.ppm_conv = [] for scale in pool_scales: self.ppm_pooling.append(nn.AdaptiveAvgPool2d(scale)) self.ppm_conv.append(nn.Sequential( nn.Conv2d(fc_dim, 512, kernel_size=1, bias=False), SynchronizedBatchNorm2d(512), nn.ReLU(inplace=True) )) self.ppm_pooling = nn.ModuleList(self.ppm_pooling) self.ppm_conv = nn.ModuleList(self.ppm_conv) self.ppm_last_conv = conv3x3_bn_relu(fc_dim + len(pool_scales)*512, fpn_dim, 1) # FPN Module self.fpn_in = [] for fpn_inplane in fpn_inplanes[:-1]: # skip the top layer self.fpn_in.append(nn.Sequential( nn.Conv2d(fpn_inplane, fpn_dim, kernel_size=1, bias=False), SynchronizedBatchNorm2d(fpn_dim), nn.ReLU(inplace=True) )) self.fpn_in = nn.ModuleList(self.fpn_in) self.fpn_out = [] for i in range(len(fpn_inplanes) - 1): # skip the top layer self.fpn_out.append(nn.Sequential( conv3x3_bn_relu(fpn_dim, fpn_dim, 1), )) self.fpn_out = nn.ModuleList(self.fpn_out) self.conv_last = nn.Sequential( conv3x3_bn_relu(len(fpn_inplanes) * fpn_dim, fpn_dim, 1), nn.Conv2d(fpn_dim, num_class, kernel_size=1) ) def forward(self, conv_out, segSize=None): conv5 = conv_out[-1] input_size = conv5.size() ppm_out = [conv5] for pool_scale, pool_conv in zip(self.ppm_pooling, self.ppm_conv): ppm_out.append(pool_conv(nn.functional.interploate( pool_scale(conv5), (input_size[2], input_size[3]), mode='bilinear', align_corners=False))) ppm_out = torch.cat(ppm_out, 1) f = self.ppm_last_conv(ppm_out) fpn_feature_list = [f] for i in reversed(range(len(conv_out) - 1)): conv_x = conv_out[i] conv_x = self.fpn_in[i](conv_x) # lateral branch f = nn.functional.interpolate( f, size=conv_x.size()[2:], mode='bilinear', align_corners=False) # top-down branch f = conv_x + f fpn_feature_list.append(self.fpn_out[i](f)) fpn_feature_list.reverse() # [P2 - P5] output_size = fpn_feature_list[0].size()[2:] fusion_list = [fpn_feature_list[0]] for i in range(1, len(fpn_feature_list)): fusion_list.append(nn.functional.interpolate( fpn_feature_list[i], output_size, mode='bilinear', align_corners=False)) fusion_out = torch.cat(fusion_list, 1) x = self.conv_last(fusion_out) if self.inference or self.use_softmax: # is True during inference x = nn.functional.interpolate( x, size=segSize, mode='bilinear', align_corners=False) if self.use_softmax: x = nn.functional.softmax(x, dim=1) return x x = nn.functional.log_softmax(x, dim=1) return x