# Copyright 2020 Erik Härkönen. All rights reserved. # This file is licensed to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. You may obtain a copy # of the License at http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS # OF ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. # Patch for broken CTRL+C handler # https://github.com/ContinuumIO/anaconda-issues/issues/905 import os os.environ['FOR_DISABLE_CONSOLE_CTRL_HANDLER'] = '1' import torch, json, numpy as np from types import SimpleNamespace import matplotlib.pyplot as plt from pathlib import Path from os import makedirs from PIL import Image from netdissect import proggan, nethook, easydict, zdataset from netdissect.modelconfig import create_instrumented_model from estimators import get_estimator from models import get_instrumented_model from scipy.cluster.vq import kmeans import re import sys import datetime import argparse from tqdm import trange from config import Config from decomposition import get_random_dirs, get_or_compute, get_max_batch_size, SEED_VISUALIZATION from utils import pad_frames def x_closest(p): distances = np.sqrt(np.sum((X - p)**2, axis=-1)) idx = np.argmin(distances) return distances[idx], X[idx] def make_gif(imgs, duration_secs, outname): head, *tail = [Image.fromarray((x * 255).astype(np.uint8)) for x in imgs] ms_per_frame = 1000 * duration_secs / instances head.save(outname, format='GIF', append_images=tail, save_all=True, duration=ms_per_frame, loop=0) def make_mp4(imgs, duration_secs, outname): import shutil import subprocess as sp FFMPEG_BIN = shutil.which("ffmpeg") assert FFMPEG_BIN is not None, 'ffmpeg not found, install with "conda install -c conda-forge ffmpeg"' assert len(imgs[0].shape) == 3, 'Invalid shape of frame data' resolution = imgs[0].shape[0:2] fps = int(len(imgs) / duration_secs) command = [ FFMPEG_BIN, '-y', # overwrite output file '-f', 'rawvideo', '-vcodec','rawvideo', '-s', f'{resolution[0]}x{resolution[1]}', # size of one frame '-pix_fmt', 'rgb24', '-r', f'{fps}', '-i', '-', # imput from pipe '-an', # no audio '-c:v', 'libx264', '-preset', 'slow', '-crf', '17', str(Path(outname).with_suffix('.mp4')) ] frame_data = np.concatenate([(x * 255).astype(np.uint8).reshape(-1) for x in imgs]) with sp.Popen(command, stdin=sp.PIPE, stdout=sp.PIPE, stderr=sp.PIPE) as p: ret = p.communicate(frame_data.tobytes()) if p.returncode != 0: print(ret[1].decode("utf-8")) raise sp.CalledProcessError(p.returncode, command) def make_grid(latent, lat_mean, lat_comp, lat_stdev, act_mean, act_comp, act_stdev, scale=1, n_rows=10, n_cols=5, make_plots=True, edit_type='latent'): from notebooks.notebook_utils import create_strip_centered inst.remove_edits() x_range = np.linspace(-scale, scale, n_cols, dtype=np.float32) # scale in sigmas rows = [] for r in range(n_rows): curr_row = [] out_batch = create_strip_centered(inst, edit_type, layer_key, [latent], act_comp[r], lat_comp[r], act_stdev[r], lat_stdev[r], act_mean, lat_mean, scale, 0, -1, n_cols)[0] for i, img in enumerate(out_batch): curr_row.append(('c{}_{:.2f}'.format(r, x_range[i]), img)) rows.append(curr_row[:n_cols]) inst.remove_edits() if make_plots: # If more rows than columns, make several blocks side by side n_blocks = 2 if n_rows > n_cols else 1 for r, data in enumerate(rows): # Add white borders imgs = pad_frames([img for _, img in data]) coord = ((r * n_blocks) % n_rows) + ((r * n_blocks) // n_rows) plt.subplot(n_rows//n_blocks, n_blocks, 1 + coord) plt.imshow(np.hstack(imgs)) # Custom x-axis labels W = imgs[0].shape[1] # image width P = imgs[1].shape[1] # padding width locs = [(0.5*W + i*(W+P)) for i in range(n_cols)] plt.xticks(locs, ["{:.2f}".format(v) for v in x_range]) plt.yticks([]) plt.ylabel(f'C{r}') plt.tight_layout() plt.subplots_adjust(top=0.96) # make room for suptitle return [img for row in rows for img in row] ###################### ### Visualize results ###################### if __name__ == '__main__': global max_batch, sample_shape, feature_shape, inst, args, layer_key, model args = Config().from_args() t_start = datetime.datetime.now() timestamp = lambda : datetime.datetime.now().strftime("%d.%m %H:%M") print(f'[{timestamp()}] {args.model}, {args.layer}, {args.estimator}') # Ensure reproducibility torch.manual_seed(0) # also sets cuda seeds np.random.seed(0) # Speed up backend torch.backends.cudnn.benchmark = True torch.autograd.set_grad_enabled(False) has_gpu = torch.cuda.is_available() device = torch.device('cuda' if has_gpu else 'cpu') layer_key = args.layer layer_name = layer_key #layer_key.lower().split('.')[-1] basedir = Path(__file__).parent.resolve() outdir = basedir / 'out' # Load model inst = get_instrumented_model(args.model, args.output_class, layer_key, device, use_w=args.use_w) model = inst.model feature_shape = inst.feature_shape[layer_key] latent_shape = model.get_latent_shape() print('Feature shape:', feature_shape) # Layout of activations if len(feature_shape) != 4: # non-spatial axis_mask = np.ones(len(feature_shape), dtype=np.int32) else: axis_mask = np.array([0, 1, 1, 1]) # only batch fixed => whole activation volume used # Shape of sample passed to PCA sample_shape = feature_shape*axis_mask sample_shape[sample_shape == 0] = 1 # Load or compute components dump_name = get_or_compute(args, inst) data = np.load(dump_name, allow_pickle=False) # does not contain object arrays X_comp = data['act_comp'] X_global_mean = data['act_mean'] X_stdev = data['act_stdev'] X_var_ratio = data['var_ratio'] X_stdev_random = data['random_stdevs'] Z_global_mean = data['lat_mean'] Z_comp = data['lat_comp'] Z_stdev = data['lat_stdev'] n_comp = X_comp.shape[0] data.close() # Transfer components to device tensors = SimpleNamespace( X_comp = torch.from_numpy(X_comp).to(device).float(), #-1, 1, C, H, W X_global_mean = torch.from_numpy(X_global_mean).to(device).float(), # 1, C, H, W X_stdev = torch.from_numpy(X_stdev).to(device).float(), Z_comp = torch.from_numpy(Z_comp).to(device).float(), Z_stdev = torch.from_numpy(Z_stdev).to(device).float(), Z_global_mean = torch.from_numpy(Z_global_mean).to(device).float(), ) transformer = get_estimator(args.estimator, n_comp, args.sparsity) tr_param_str = transformer.get_param_str() # Compute max batch size given VRAM usage max_batch = args.batch_size or (get_max_batch_size(inst, device) if has_gpu else 1) print('Batch size:', max_batch) def show(): if args.batch_mode: plt.close('all') else: plt.show() print(f'[{timestamp()}] Creating visualizations') # Ensure visualization gets new samples torch.manual_seed(SEED_VISUALIZATION) np.random.seed(SEED_VISUALIZATION) # Make output directories est_id = f'spca_{args.sparsity}' if args.estimator == 'spca' else args.estimator outdir_comp = outdir/model.name/layer_key.lower()/est_id/'comp' outdir_inst = outdir/model.name/layer_key.lower()/est_id/'inst' outdir_summ = outdir/model.name/layer_key.lower()/est_id/'summ' makedirs(outdir_comp, exist_ok=True) makedirs(outdir_inst, exist_ok=True) makedirs(outdir_summ, exist_ok=True) # Measure component sparsity (!= activation sparsity) sparsity = np.mean(X_comp == 0) # percentage of zero values in components print(f'Sparsity: {sparsity:.2f}') def get_edit_name(mode): if mode == 'activation': is_stylegan = 'StyleGAN' in args.model is_w = layer_key in ['style', 'g_mapping'] return 'W' if (is_stylegan and is_w) else 'ACT' elif mode == 'latent': return model.latent_space_name() elif mode == 'both': return 'BOTH' else: raise RuntimeError(f'Unknown edit mode {mode}') # Only visualize applicable edit modes if args.use_w and layer_key in ['style', 'g_mapping']: edit_modes = ['latent'] # activation edit is the same else: edit_modes = ['activation', 'latent'] # Summary grid, real components for edit_mode in edit_modes: plt.figure(figsize = (14,12)) plt.suptitle(f"{args.estimator.upper()}: {model.name} - {layer_name}, {get_edit_name(edit_mode)} edit", size=16) make_grid(tensors.Z_global_mean, tensors.Z_global_mean, tensors.Z_comp, tensors.Z_stdev, tensors.X_global_mean, tensors.X_comp, tensors.X_stdev, scale=args.sigma, edit_type=edit_mode, n_rows=14) plt.savefig(outdir_summ / f'components_{get_edit_name(edit_mode)}.jpg', dpi=300) show() if args.make_video: components = 15 instances = 150 # One reasonable, one over the top for sigma in [args.sigma, 3*args.sigma]: for c in range(components): for edit_mode in edit_modes: frames = make_grid(tensors.Z_global_mean, tensors.Z_global_mean, tensors.Z_comp[c:c+1, :, :], tensors.Z_stdev[c:c+1], tensors.X_global_mean, tensors.X_comp[c:c+1, :, :], tensors.X_stdev[c:c+1], n_rows=1, n_cols=instances, scale=sigma, make_plots=False, edit_type=edit_mode) plt.close('all') frames = [x for _, x in frames] frames = frames + frames[::-1] make_mp4(frames, 5, outdir_comp / f'{get_edit_name(edit_mode)}_sigma{sigma}_comp{c}.mp4') # Summary grid, random directions # Using the stdevs of the principal components for same norm random_dirs_act = torch.from_numpy(get_random_dirs(n_comp, np.prod(sample_shape)).reshape(-1, *sample_shape)).to(device) random_dirs_z = torch.from_numpy(get_random_dirs(n_comp, np.prod(inst.input_shape)).reshape(-1, *latent_shape)).to(device) for edit_mode in edit_modes: plt.figure(figsize = (14,12)) plt.suptitle(f"{model.name} - {layer_name}, random directions w/ PC stdevs, {get_edit_name(edit_mode)} edit", size=16) make_grid(tensors.Z_global_mean, tensors.Z_global_mean, random_dirs_z, tensors.Z_stdev, tensors.X_global_mean, random_dirs_act, tensors.X_stdev, scale=args.sigma, edit_type=edit_mode, n_rows=14) plt.savefig(outdir_summ / f'random_dirs_{get_edit_name(edit_mode)}.jpg', dpi=300) show() # Random instances w/ components added n_random_imgs = 10 latents = model.sample_latent(n_samples=n_random_imgs) for img_idx in trange(n_random_imgs, desc='Random images', ascii=True): #print(f'Creating visualizations for random image {img_idx+1}/{n_random_imgs}') z = latents[img_idx][None, ...] # Summary grid, real components for edit_mode in edit_modes: plt.figure(figsize = (14,12)) plt.suptitle(f"{args.estimator.upper()}: {model.name} - {layer_name}, {get_edit_name(edit_mode)} edit", size=16) make_grid(z, tensors.Z_global_mean, tensors.Z_comp, tensors.Z_stdev, tensors.X_global_mean, tensors.X_comp, tensors.X_stdev, scale=args.sigma, edit_type=edit_mode, n_rows=14) plt.savefig(outdir_summ / f'samp{img_idx}_real_{get_edit_name(edit_mode)}.jpg', dpi=300) show() if args.make_video: components = 5 instances = 150 # One reasonable, one over the top for sigma in [args.sigma, 3*args.sigma]: #[2, 5]: for edit_mode in edit_modes: imgs = make_grid(z, tensors.Z_global_mean, tensors.Z_comp, tensors.Z_stdev, tensors.X_global_mean, tensors.X_comp, tensors.X_stdev, n_rows=components, n_cols=instances, scale=sigma, make_plots=False, edit_type=edit_mode) plt.close('all') for c in range(components): frames = [x for _, x in imgs[c*instances:(c+1)*instances]] frames = frames + frames[::-1] make_mp4(frames, 5, outdir_inst / f'{get_edit_name(edit_mode)}_sigma{sigma}_img{img_idx}_comp{c}.mp4') print('Done in', datetime.datetime.now() - t_start)