import gradio as gr from gradio_imageslider import ImageSlider from loadimg import load_img import spaces from transformers import AutoModelForImageSegmentation import torch from torchvision import transforms torch.set_float32_matmul_precision(["high", "highest"][0]) birefnet = AutoModelForImageSegmentation.from_pretrained( "ZhengPeng7/BiRefNet", trust_remote_code=True ) birefnet.to("cuda") # Image transformation pipeline transform_image = transforms.Compose( [ transforms.Resize((1024, 1024)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) # Processing function def fn(image): im = load_img(image, output_type="pil") im = im.convert("RGB") origin = im.copy() image = process(im) return (image, origin) @spaces.GPU def process(image): image_size = image.size input_images = transform_image(image).unsqueeze(0).to("cuda") # Prediction with torch.no_grad(): preds = birefnet(input_images)[-1].sigmoid().cpu() pred = preds[0].squeeze() pred_pil = transforms.ToPILImage()(pred) mask = pred_pil.resize(image_size) image.putalpha(mask) return image # Process file upload def process_file(f): name_path = f.rsplit(".", 1)[0] + ".png" im = load_img(f, output_type="pil") im = im.convert("RGB") transparent = process(im) transparent.save(name_path) return name_path # Custom CSS Styling css_style = """ .gradio-container { background-color: #1b1b1b !important; color: #f5f5f5 !important; } input, textarea, button { border-radius: 8px !important; background-color: #2b2b2b !important; color: #f5f5f5 !important; border: 1px solid #3c3c3c !important; } button { background-color: #9146ff !important; padding: 10px 24px !important; color: white !important; } button:hover { background-color: #732eb5 !important; } .gr-button-primary { background-color: #9146ff !important; } .gr-image-preview { background-color: #2b2b2b !important; border-radius: 8px !important; } .gr-file-preview { background-color: #2b2b2b !important; color: white !important; } #output-image img { border-radius: 8px; max-width: 100%; } """ # Image sliders slider1 = ImageSlider(label="birefnet", type="pil") slider2 = ImageSlider(label="birefnet", type="pil") # Image upload areas image = gr.Image(label="Upload an image", live=True) # Automatically submits on upload image2 = gr.Image(label="Upload an image", type="filepath", live=True) # Other inputs and file outputs text = gr.Textbox(label="Paste an image URL") png_file = gr.File(label="Output PNG file") # Sample images and URLs chameleon = load_img("butterfly.jpg", output_type="pil") url = "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg" # Define the tabs for each functionality tab1 = gr.Interface( fn, inputs=image, outputs=slider1, examples=[chameleon], api_name="image" ) tab2 = gr.Interface(fn, inputs=text, outputs=slider2, examples=[url], api_name="text") tab3 = gr.Interface(process_file, inputs=image2, outputs=png_file, examples=["butterfly.jpg"], api_name="png") # Create the Gradio app with custom CSS and tabs with gr.Blocks(css=css_style) as demo: gr.TabbedInterface([tab1, tab2, tab3], ["image", "text", "png"], title="birefnet for background removal") if __name__ == "__main__": demo.launch(show_error=True)