import os import csv import streamlit as st from langchain_community.vectorstores import FAISS from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_huggingface import HuggingFaceEndpoint from langchain.prompts import PromptTemplate from langchain.chains import LLMChain, RetrievalQA from huggingface_hub import login # Login to Hugging Face login(token=st.secrets["HF_TOKEN"]) # Load FAISS index and ensure it only happens once if 'db' not in st.session_state: st.session_state.db = FAISS.load_local( "faiss_index", HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L12-v2'), allow_dangerous_deserialization=True ) # Use session state for retriever retriever = st.session_state.db.as_retriever( search_type="mmr", search_kwargs={'k': 1} ) # Define prompt template prompt_template = """ ### [INST] Instruction: You are a Q&A assistant. Your goal is to answer questions as accurately as possible based on the instructions and context provided without using prior knowledge. You answer in FRENCH Analyse carefully the context and provide a direct answer based on the context. If the user said Bonjour or Hello your only answer will be Hi! comment puis-je vous aider? Answer in french only {context} Vous devez répondre aux questions en français. ### QUESTION: {question} [/INST] Answer in french only Vous devez répondre aux questions en français. """ repo_id = "mistralai/Mistral-7B-Instruct-v0.3" # Load the model only once if 'mistral_llm' not in st.session_state: st.session_state.mistral_llm = HuggingFaceEndpoint( repo_id=repo_id, max_length=2048, temperature=0.05, huggingfacehub_api_token=st.secrets["HF_TOKEN"] ) # Create prompt and LLM chain prompt = PromptTemplate( input_variables=["question"], template=prompt_template, ) llm_chain = LLMChain(llm=st.session_state.mistral_llm, prompt=prompt) # Create QA chain qa = RetrievalQA.from_chain_type( llm=st.session_state.mistral_llm, chain_type="stuff", retriever=retriever, chain_type_kwargs={"prompt": prompt}, ) import psycopg2 import streamlit as st from datetime import datetime import os # PostgreSQL connection setup using secrets from Hugging Face Spaces def create_connection(): conn = psycopg2.connect( host=os.getenv("DB_HOST"), database=os.getenv("DB_NAME"), user=os.getenv("DB_USER"), password=os.getenv("DB_PASSWORD"), port=os.getenv("DB_PORT") ) return conn def create_table(conn): with conn.cursor() as cur: cur.execute(''' CREATE TABLE IF NOT EXISTS feedback ( id SERIAL PRIMARY KEY, timestamp TIMESTAMP NOT NULL, rating INTEGER NOT NULL, comment TEXT NOT NULL ); ''') conn.commit() # Streamlit interface with improved aesthetics st.set_page_config(page_title="Alter-IA Chat", page_icon="🤖") # Define function to handle user input and display chatbot response def chatbot_response(user_input): response = qa.run(user_input) return response # Create columns for logos col1, col2, col3 = st.columns([2, 3, 2]) with col1: st.image("Design 3_22.png", width=150, use_column_width=True) with col3: st.image("Altereo logo 2023 original - eau et territoires durables.png", width=150, use_column_width=True) # CSS for styling st.markdown(""" """, unsafe_allow_html=True) st.markdown('
"Votre Réponse à Chaque Défi Méthodologique "
', unsafe_allow_html=True) # Input and button for user interaction user_input = st.text_input("You:", "") submit_button = st.button("Ask 📨") if submit_button: if user_input.strip() != "": bot_response = chatbot_response(user_input) st.markdown("### Bot:") st.text_area("", value=bot_response, height=300) # Add rating and comment section st.markdown("---") st.markdown("#### Rate the Response:") # Custom star rating HTML rating_html = """ """ st.markdown(rating_html, unsafe_allow_html=True) # Get the selected rating via JavaScript rating = st.text_input("Selected Rating:", value="3", key="rating_input", label_visibility="hidden") comment = st.text_area("Your Comment:") # Submit feedback feedback_button = st.button("Submit Feedback") if feedback_button: if comment.strip() == "": st.warning("⚠ Please provide a comment.") else: st.success("Thank you for your feedback!") # Store feedback in PostgreSQL conn = create_connection() with conn.cursor() as cur: timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") cur.execute('INSERT INTO feedback (timestamp, rating, comment) VALUES (%s, %s, %s)', (timestamp, int(rating), comment)) conn.commit() conn.close() else: st.warning("⚠ Please enter a message.") # Motivational quote at the bottom st.markdown("---") st.markdown("La collaboration est la clé du succès. Chaque question trouve sa réponse, chaque défi devient une opportunité.")