import os import streamlit as st from langchain_community.vectorstores import FAISS from langchain_community.embeddings import HuggingFaceEmbeddings import gspread from oauth2client.service_account import ServiceAccountCredentials import json from langchain_huggingface import HuggingFaceEndpoint from langchain.prompts import PromptTemplate from langchain.schema.runnable import RunnablePassthrough from langchain.chains import LLMChain # Load Google service account credentials from Hugging Face secrets GOOGLE_SERVICE_ACCOUNT_JSON = st.secrets["GOOGLE_SERVICE_ACCOUNT_JSON"] # Google Sheets API v4 setup scope = ["https://www.googleapis.com/auth/spreadsheets", "https://www.googleapis.com/auth/drive"] service_account_info = json.loads(GOOGLE_SERVICE_ACCOUNT_JSON) creds = ServiceAccountCredentials.from_json_keyfile_dict(service_account_info, scope) client = gspread.authorize(creds) spreadsheet_id = '1Jf1k7Q71ihsxBf-XQYyucamMy14q7IjhUDlU8ZzR_Nc' # Replace with your actual spreadsheet ID sheet = client.open_by_key(spreadsheet_id).sheet1 # Function to save user feedback to Google Sheets def save_feedback(user_input, bot_response, rating, comment): feedback = [user_input, bot_response, rating, comment] sheet.append_row(feedback) from huggingface_hub import login login(token=st.secrets["HF_TOKEN"]) from langchain_community.document_loaders import TextLoader from langchain_text_splitters import CharacterTextSplitter from langchain_community.document_loaders import PyPDFLoader from langchain.chains import RetrievalQA from langchain.prompts import PromptTemplate from langchain.embeddings.huggingface import HuggingFaceEmbeddings db = FAISS.load_local("faiss_index", HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L12-v2'),allow_dangerous_deserialization=True) retriever = db.as_retriever( search_type="similarity", search_kwargs={'k': 2} ) prompt_template = """ ### [INST] Instruction: You are a Q&A assistant. Your goal is to answer questions as accurately as possible based on the instructions and context provided without using prior knowledge.You answer in FRENCH Analyse carefully the context and provide a direct answer based on the context. If the user said Bonjour or Hello your only answer will be Hi! comment puis-je vous aider? Answer in french only {context} Vous devez répondre aux questions en français. ### QUESTION: {question} [/INST] Answer in french only Vous devez répondre aux questions en français. """ repo_id = "mistralai/Mistral-7B-Instruct-v0.3" mistral_llm = HuggingFaceEndpoint( repo_id=repo_id, max_length=2048, temperature=0.02, huggingfacehub_api_token=st.secrets["HF_TOKEN"] ) # Create prompt from prompt template prompt = PromptTemplate( input_variables=["question"], template=prompt_template, ) # Create llm chain llm_chain = LLMChain(llm=mistral_llm, prompt=prompt) retriever.search_kwargs = {'k':4} qa = RetrievalQA.from_chain_type( llm=mistral_llm, chain_type="stuff", retriever=retriever, chain_type_kwargs={"prompt": prompt}, ) import streamlit as st # Streamlit interface with improved aesthetics st.set_page_config(page_title="Alter-IA Chat", page_icon="🤖") # Define function to handle user input and display chatbot response def chatbot_response(user_input): response = qa.run(user_input) return response # Session state to hold user input and chatbot response if 'user_input' not in st.session_state: st.session_state.user_input = "" if 'bot_response' not in st.session_state: st.session_state.bot_response = "" # Create columns for logos col1, col2, col3 = st.columns([2, 3, 2]) with col1: st.image("Design 3_22.png", width=150, use_column_width=True) # Adjust image path and size as needed with col3: st.image("Altereo logo 2023 original - eau et territoires durables.png", width=150, use_column_width=True) # Adjust image path and size as needed # Streamlit components st.markdown(""" """, unsafe_allow_html=True) # Use CSS classes to style the text st.markdown('
"Votre Réponse à Chaque Défi Méthodologique "
', unsafe_allow_html=True) # Input form for user interaction with st.form(key='interaction_form'): st.session_state.user_input = st.text_input("You:", key="user_input_input") ask_button = st.form_submit_button("Ask 📨") # Button to submit the question if ask_button and st.session_state.user_input.strip(): st.session_state.bot_response = chatbot_response(st.session_state.user_input) # Display the bot response if available if st.session_state.bot_response: st.markdown("### Bot:") st.text_area("", value=st.session_state.bot_response, height=600) # Separate form for feedback submission with st.form(key='feedback_form'): st.markdown("### Évaluez la réponse :") rating = st.slider("Select a rating:", min_value=1, max_value=5, value=1, key="rating") st.markdown("##### Laissez un commentaire ici:") comment = st.text_area("", key="comment") # Separate submit button for feedback feedback_submit_button = st.form_submit_button("Soumettre ton Feedback") if feedback_submit_button: if comment.strip(): save_feedback(st.session_state.user_input, st.session_state.bot_response, rating, comment) st.success("Merci pour votre feedback!") # Clear the session state after submission st.session_state.user_input = "" st.session_state.bot_response = "" else: st.warning("Veuillez fournir un commentaire avant de soumettre votre retour.") st.markdown("---") st.markdown("La collaboration est la clé du succès. Chaque question trouve sa réponse, chaque défi devient une opportunité.")