// https://github.com/pair-code/umap-js Copyright 2019 Google (function webpackUniversalModuleDefinition(root, factory) { if(typeof exports === 'object' && typeof module === 'object') module.exports = factory(); else if(typeof define === 'function' && define.amd) define([], factory); else { var a = factory(); for(var i in a) (typeof exports === 'object' ? exports : root)[i] = a[i]; } })(window, function() { return /******/ (function(modules) { // webpackBootstrap /******/ // The module cache /******/ var installedModules = {}; /******/ /******/ // The require function /******/ function __webpack_require__(moduleId) { /******/ /******/ // Check if module is in cache /******/ if(installedModules[moduleId]) { /******/ return installedModules[moduleId].exports; /******/ } /******/ // Create a new module (and put it into the cache) /******/ var module = installedModules[moduleId] = { /******/ i: moduleId, /******/ l: false, /******/ exports: {} /******/ }; /******/ /******/ // Execute the module function /******/ modules[moduleId].call(module.exports, module, module.exports, __webpack_require__); /******/ /******/ // Flag the module as loaded /******/ module.l = true; /******/ /******/ // Return the exports of the module /******/ return module.exports; /******/ } /******/ /******/ /******/ // expose the modules object (__webpack_modules__) /******/ __webpack_require__.m = modules; /******/ /******/ // expose the module cache /******/ __webpack_require__.c = installedModules; /******/ /******/ // define getter function for harmony exports /******/ __webpack_require__.d = function(exports, name, getter) { /******/ if(!__webpack_require__.o(exports, name)) { /******/ Object.defineProperty(exports, name, { enumerable: true, get: getter }); /******/ } /******/ }; /******/ /******/ // define __esModule on exports /******/ __webpack_require__.r = function(exports) { /******/ if(typeof Symbol !== 'undefined' && Symbol.toStringTag) { /******/ Object.defineProperty(exports, Symbol.toStringTag, { value: 'Module' }); /******/ } /******/ Object.defineProperty(exports, '__esModule', { value: true }); /******/ }; /******/ /******/ // create a fake namespace object /******/ // mode & 1: value is a module id, require it /******/ // mode & 2: merge all properties of value into the ns /******/ // mode & 4: return value when already ns object /******/ // mode & 8|1: behave like require /******/ __webpack_require__.t = function(value, mode) { /******/ if(mode & 1) value = __webpack_require__(value); /******/ if(mode & 8) return value; /******/ if((mode & 4) && typeof value === 'object' && value && value.__esModule) return value; /******/ var ns = Object.create(null); /******/ __webpack_require__.r(ns); /******/ Object.defineProperty(ns, 'default', { enumerable: true, value: value }); /******/ if(mode & 2 && typeof value != 'string') for(var key in value) __webpack_require__.d(ns, key, function(key) { return value[key]; }.bind(null, key)); /******/ return ns; /******/ }; /******/ /******/ // getDefaultExport function for compatibility with non-harmony modules /******/ __webpack_require__.n = function(module) { /******/ var getter = module && module.__esModule ? /******/ function getDefault() { return module['default']; } : /******/ function getModuleExports() { return module; }; /******/ __webpack_require__.d(getter, 'a', getter); /******/ return getter; /******/ }; /******/ /******/ // Object.prototype.hasOwnProperty.call /******/ __webpack_require__.o = function(object, property) { return Object.prototype.hasOwnProperty.call(object, property); }; /******/ /******/ // __webpack_public_path__ /******/ __webpack_require__.p = ""; /******/ /******/ /******/ // Load entry module and return exports /******/ return __webpack_require__(__webpack_require__.s = 5); /******/ }) /************************************************************************/ /******/ ([ /* 0 */ /***/ (function(module, exports, __webpack_require__) { "use strict"; const toString = Object.prototype.toString; function isAnyArray(object) { return toString.call(object).endsWith('Array]'); } module.exports = isAnyArray; /***/ }), /* 1 */ /***/ (function(module, exports, __webpack_require__) { "use strict"; var __values = (this && this.__values) || function (o) { var m = typeof Symbol === "function" && o[Symbol.iterator], i = 0; if (m) return m.call(o); return { next: function () { if (o && i >= o.length) o = void 0; return { value: o && o[i++], done: !o }; } }; }; Object.defineProperty(exports, "__esModule", { value: true }); function tauRandInt(n, random) { return Math.floor(random() * n); } exports.tauRandInt = tauRandInt; function tauRand(random) { return random(); } exports.tauRand = tauRand; function norm(vec) { var e_1, _a; var result = 0; try { for (var vec_1 = __values(vec), vec_1_1 = vec_1.next(); !vec_1_1.done; vec_1_1 = vec_1.next()) { var item = vec_1_1.value; result += Math.pow(item, 2); } } catch (e_1_1) { e_1 = { error: e_1_1 }; } finally { try { if (vec_1_1 && !vec_1_1.done && (_a = vec_1.return)) _a.call(vec_1); } finally { if (e_1) throw e_1.error; } } return Math.sqrt(result); } exports.norm = norm; function empty(n) { var output = []; for (var i = 0; i < n; i++) { output.push(undefined); } return output; } exports.empty = empty; function range(n) { return empty(n).map(function (_, i) { return i; }); } exports.range = range; function filled(n, v) { return empty(n).map(function () { return v; }); } exports.filled = filled; function zeros(n) { return filled(n, 0); } exports.zeros = zeros; function ones(n) { return filled(n, 1); } exports.ones = ones; function linear(a, b, len) { return empty(len).map(function (_, i) { return a + i * ((b - a) / (len - 1)); }); } exports.linear = linear; function sum(input) { return input.reduce(function (sum, val) { return sum + val; }); } exports.sum = sum; function mean(input) { return sum(input) / input.length; } exports.mean = mean; function max(input) { var max = 0; for (var i = 0; i < input.length; i++) { max = input[i] > max ? input[i] : max; } return max; } exports.max = max; function max2d(input) { var max = 0; for (var i = 0; i < input.length; i++) { for (var j = 0; j < input[i].length; j++) { max = input[i][j] > max ? input[i][j] : max; } } return max; } exports.max2d = max2d; function rejectionSample(nSamples, poolSize, random) { var result = zeros(nSamples); for (var i = 0; i < nSamples; i++) { var rejectSample = true; while (rejectSample) { var j = tauRandInt(poolSize, random); var broken = false; for (var k = 0; k < i; k++) { if (j === result[k]) { broken = true; break; } } if (!broken) { rejectSample = false; } result[i] = j; } } return result; } exports.rejectionSample = rejectionSample; function reshape2d(x, a, b) { var rows = []; var count = 0; var index = 0; if (x.length !== a * b) { throw new Error('Array dimensions must match input length.'); } for (var i = 0; i < a; i++) { var col = []; for (var j = 0; j < b; j++) { col.push(x[index]); index += 1; } rows.push(col); count += 1; } return rows; } exports.reshape2d = reshape2d; /***/ }), /* 2 */ /***/ (function(module, exports, __webpack_require__) { "use strict"; var __importStar = (this && this.__importStar) || function (mod) { if (mod && mod.__esModule) return mod; var result = {}; if (mod != null) for (var k in mod) if (Object.hasOwnProperty.call(mod, k)) result[k] = mod[k]; result["default"] = mod; return result; }; Object.defineProperty(exports, "__esModule", { value: true }); var utils = __importStar(__webpack_require__(1)); function makeHeap(nPoints, size) { var makeArrays = function (fillValue) { return utils.empty(nPoints).map(function () { return utils.filled(size, fillValue); }); }; var heap = []; heap.push(makeArrays(-1)); heap.push(makeArrays(Infinity)); heap.push(makeArrays(0)); return heap; } exports.makeHeap = makeHeap; function rejectionSample(nSamples, poolSize, random) { var result = utils.zeros(nSamples); for (var i = 0; i < nSamples; i++) { var rejectSample = true; var j = 0; while (rejectSample) { j = utils.tauRandInt(poolSize, random); var broken = false; for (var k = 0; k < i; k++) { if (j === result[k]) { broken = true; break; } } if (!broken) rejectSample = false; } result[i] = j; } return result; } exports.rejectionSample = rejectionSample; function heapPush(heap, row, weight, index, flag) { row = Math.floor(row); var indices = heap[0][row]; var weights = heap[1][row]; var isNew = heap[2][row]; if (weight >= weights[0]) { return 0; } for (var i = 0; i < indices.length; i++) { if (index === indices[i]) { return 0; } } return uncheckedHeapPush(heap, row, weight, index, flag); } exports.heapPush = heapPush; function uncheckedHeapPush(heap, row, weight, index, flag) { var indices = heap[0][row]; var weights = heap[1][row]; var isNew = heap[2][row]; if (weight >= weights[0]) { return 0; } weights[0] = weight; indices[0] = index; isNew[0] = flag; var i = 0; var iSwap = 0; while (true) { var ic1 = 2 * i + 1; var ic2 = ic1 + 1; var heapShape2 = heap[0][0].length; if (ic1 >= heapShape2) { break; } else if (ic2 >= heapShape2) { if (weights[ic1] > weight) { iSwap = ic1; } else { break; } } else if (weights[ic1] >= weights[ic2]) { if (weight < weights[ic1]) { iSwap = ic1; } else { break; } } else { if (weight < weights[ic2]) { iSwap = ic2; } else { break; } } weights[i] = weights[iSwap]; indices[i] = indices[iSwap]; isNew[i] = isNew[iSwap]; i = iSwap; } weights[i] = weight; indices[i] = index; isNew[i] = flag; return 1; } exports.uncheckedHeapPush = uncheckedHeapPush; function buildCandidates(currentGraph, nVertices, nNeighbors, maxCandidates, random) { var candidateNeighbors = makeHeap(nVertices, maxCandidates); for (var i = 0; i < nVertices; i++) { for (var j = 0; j < nNeighbors; j++) { if (currentGraph[0][i][j] < 0) { continue; } var idx = currentGraph[0][i][j]; var isn = currentGraph[2][i][j]; var d = utils.tauRand(random); heapPush(candidateNeighbors, i, d, idx, isn); heapPush(candidateNeighbors, idx, d, i, isn); currentGraph[2][i][j] = 0; } } return candidateNeighbors; } exports.buildCandidates = buildCandidates; function deheapSort(heap) { var indices = heap[0]; var weights = heap[1]; for (var i = 0; i < indices.length; i++) { var indHeap = indices[i]; var distHeap = weights[i]; for (var j = 0; j < indHeap.length - 1; j++) { var indHeapIndex = indHeap.length - j - 1; var distHeapIndex = distHeap.length - j - 1; var temp1 = indHeap[0]; indHeap[0] = indHeap[indHeapIndex]; indHeap[indHeapIndex] = temp1; var temp2 = distHeap[0]; distHeap[0] = distHeap[distHeapIndex]; distHeap[distHeapIndex] = temp2; siftDown(distHeap, indHeap, distHeapIndex, 0); } } return { indices: indices, weights: weights }; } exports.deheapSort = deheapSort; function siftDown(heap1, heap2, ceiling, elt) { while (elt * 2 + 1 < ceiling) { var leftChild = elt * 2 + 1; var rightChild = leftChild + 1; var swap = elt; if (heap1[swap] < heap1[leftChild]) { swap = leftChild; } if (rightChild < ceiling && heap1[swap] < heap1[rightChild]) { swap = rightChild; } if (swap === elt) { break; } else { var temp1 = heap1[elt]; heap1[elt] = heap1[swap]; heap1[swap] = temp1; var temp2 = heap2[elt]; heap2[elt] = heap2[swap]; heap2[swap] = temp2; elt = swap; } } } function smallestFlagged(heap, row) { var ind = heap[0][row]; var dist = heap[1][row]; var flag = heap[2][row]; var minDist = Infinity; var resultIndex = -1; for (var i = 0; i > ind.length; i++) { if (flag[i] === 1 && dist[i] < minDist) { minDist = dist[i]; resultIndex = i; } } if (resultIndex >= 0) { flag[resultIndex] = 0; return Math.floor(ind[resultIndex]); } else { return -1; } } exports.smallestFlagged = smallestFlagged; /***/ }), /* 3 */ /***/ (function(module, exports, __webpack_require__) { "use strict"; var __read = (this && this.__read) || function (o, n) { var m = typeof Symbol === "function" && o[Symbol.iterator]; if (!m) return o; var i = m.call(o), r, ar = [], e; try { while ((n === void 0 || n-- > 0) && !(r = i.next()).done) ar.push(r.value); } catch (error) { e = { error: error }; } finally { try { if (r && !r.done && (m = i["return"])) m.call(i); } finally { if (e) throw e.error; } } return ar; }; var __spread = (this && this.__spread) || function () { for (var ar = [], i = 0; i < arguments.length; i++) ar = ar.concat(__read(arguments[i])); return ar; }; var __values = (this && this.__values) || function (o) { var m = typeof Symbol === "function" && o[Symbol.iterator], i = 0; if (m) return m.call(o); return { next: function () { if (o && i >= o.length) o = void 0; return { value: o && o[i++], done: !o }; } }; }; var __importStar = (this && this.__importStar) || function (mod) { if (mod && mod.__esModule) return mod; var result = {}; if (mod != null) for (var k in mod) if (Object.hasOwnProperty.call(mod, k)) result[k] = mod[k]; result["default"] = mod; return result; }; Object.defineProperty(exports, "__esModule", { value: true }); var _a; var utils = __importStar(__webpack_require__(1)); var SparseMatrix = (function () { function SparseMatrix(rows, cols, values, dims) { this.entries = new Map(); this.nRows = 0; this.nCols = 0; this.rows = __spread(rows); this.cols = __spread(cols); this.values = __spread(values); for (var i = 0; i < values.length; i++) { var key = this.makeKey(this.rows[i], this.cols[i]); this.entries.set(key, i); } this.nRows = dims[0]; this.nCols = dims[1]; } SparseMatrix.prototype.makeKey = function (row, col) { return row + ":" + col; }; SparseMatrix.prototype.checkDims = function (row, col) { var withinBounds = row < this.nRows && col < this.nCols; if (!withinBounds) { throw new Error('array index out of bounds'); } }; SparseMatrix.prototype.set = function (row, col, value) { this.checkDims(row, col); var key = this.makeKey(row, col); if (!this.entries.has(key)) { this.rows.push(row); this.cols.push(col); this.values.push(value); this.entries.set(key, this.values.length - 1); } else { var index = this.entries.get(key); this.values[index] = value; } }; SparseMatrix.prototype.get = function (row, col, defaultValue) { if (defaultValue === void 0) { defaultValue = 0; } this.checkDims(row, col); var key = this.makeKey(row, col); if (this.entries.has(key)) { var index = this.entries.get(key); return this.values[index]; } else { return defaultValue; } }; SparseMatrix.prototype.getDims = function () { return [this.nRows, this.nCols]; }; SparseMatrix.prototype.getRows = function () { return __spread(this.rows); }; SparseMatrix.prototype.getCols = function () { return __spread(this.cols); }; SparseMatrix.prototype.getValues = function () { return __spread(this.values); }; SparseMatrix.prototype.forEach = function (fn) { for (var i = 0; i < this.values.length; i++) { fn(this.values[i], this.rows[i], this.cols[i]); } }; SparseMatrix.prototype.map = function (fn) { var vals = []; for (var i = 0; i < this.values.length; i++) { vals.push(fn(this.values[i], this.rows[i], this.cols[i])); } var dims = [this.nRows, this.nCols]; return new SparseMatrix(this.rows, this.cols, vals, dims); }; SparseMatrix.prototype.toArray = function () { var _this = this; var rows = utils.empty(this.nRows); var output = rows.map(function () { return utils.zeros(_this.nCols); }); for (var i = 0; i < this.values.length; i++) { output[this.rows[i]][this.cols[i]] = this.values[i]; } return output; }; return SparseMatrix; }()); exports.SparseMatrix = SparseMatrix; function transpose(matrix) { var cols = []; var rows = []; var vals = []; matrix.forEach(function (value, row, col) { cols.push(row); rows.push(col); vals.push(value); }); var dims = [matrix.nCols, matrix.nRows]; return new SparseMatrix(rows, cols, vals, dims); } exports.transpose = transpose; function identity(size) { var _a = __read(size, 1), rows = _a[0]; var matrix = new SparseMatrix([], [], [], size); for (var i = 0; i < rows; i++) { matrix.set(i, i, 1); } return matrix; } exports.identity = identity; function pairwiseMultiply(a, b) { return elementWise(a, b, function (x, y) { return x * y; }); } exports.pairwiseMultiply = pairwiseMultiply; function add(a, b) { return elementWise(a, b, function (x, y) { return x + y; }); } exports.add = add; function subtract(a, b) { return elementWise(a, b, function (x, y) { return x - y; }); } exports.subtract = subtract; function maximum(a, b) { return elementWise(a, b, function (x, y) { return (x > y ? x : y); }); } exports.maximum = maximum; function multiplyScalar(a, scalar) { return a.map(function (value) { return value * scalar; }); } exports.multiplyScalar = multiplyScalar; function eliminateZeros(m) { var zeroIndices = new Set(); var values = m.getValues(); var rows = m.getRows(); var cols = m.getCols(); for (var i = 0; i < values.length; i++) { if (values[i] === 0) { zeroIndices.add(i); } } var removeByZeroIndex = function (_, index) { return !zeroIndices.has(index); }; var nextValues = values.filter(removeByZeroIndex); var nextRows = rows.filter(removeByZeroIndex); var nextCols = cols.filter(removeByZeroIndex); return new SparseMatrix(nextRows, nextCols, nextValues, m.getDims()); } exports.eliminateZeros = eliminateZeros; function normalize(m, normType) { if (normType === void 0) { normType = "l2"; } var e_1, _a; var normFn = normFns[normType]; var colsByRow = new Map(); m.forEach(function (_, row, col) { var cols = colsByRow.get(row) || []; cols.push(col); colsByRow.set(row, cols); }); var nextMatrix = new SparseMatrix([], [], [], m.getDims()); var _loop_1 = function (row) { var cols = colsByRow.get(row).sort(); var vals = cols.map(function (col) { return m.get(row, col); }); var norm = normFn(vals); for (var i = 0; i < norm.length; i++) { nextMatrix.set(row, cols[i], norm[i]); } }; try { for (var _b = __values(colsByRow.keys()), _c = _b.next(); !_c.done; _c = _b.next()) { var row = _c.value; _loop_1(row); } } catch (e_1_1) { e_1 = { error: e_1_1 }; } finally { try { if (_c && !_c.done && (_a = _b.return)) _a.call(_b); } finally { if (e_1) throw e_1.error; } } return nextMatrix; } exports.normalize = normalize; var normFns = (_a = {}, _a["max"] = function (xs) { var max = -Infinity; for (var i = 0; i < xs.length; i++) { max = xs[i] > max ? xs[i] : max; } return xs.map(function (x) { return x / max; }); }, _a["l1"] = function (xs) { var sum = 0; for (var i = 0; i < xs.length; i++) { sum += xs[i]; } return xs.map(function (x) { return x / sum; }); }, _a["l2"] = function (xs) { var sum = 0; for (var i = 0; i < xs.length; i++) { sum += Math.pow(xs[i], 2); } return xs.map(function (x) { return Math.sqrt(Math.pow(x, 2) / sum); }); }, _a); function elementWise(a, b, op) { var visited = new Set(); var rows = []; var cols = []; var vals = []; var operate = function (row, col) { rows.push(row); cols.push(col); var nextValue = op(a.get(row, col), b.get(row, col)); vals.push(nextValue); }; var valuesA = a.getValues(); var rowsA = a.getRows(); var colsA = a.getCols(); for (var i = 0; i < valuesA.length; i++) { var row = rowsA[i]; var col = colsA[i]; var key = row + ":" + col; visited.add(key); operate(row, col); } var valuesB = b.getValues(); var rowsB = b.getRows(); var colsB = b.getCols(); for (var i = 0; i < valuesB.length; i++) { var row = rowsB[i]; var col = colsB[i]; var key = row + ":" + col; if (visited.has(key)) continue; operate(row, col); } var dims = [a.nRows, a.nCols]; return new SparseMatrix(rows, cols, vals, dims); } function getCSR(x) { var entries = []; x.forEach(function (value, row, col) { entries.push({ value: value, row: row, col: col }); }); entries.sort(function (a, b) { if (a.row === b.row) { return a.col - b.col; } else { return a.row - b.col; } }); var indices = []; var values = []; var indptr = []; var currentRow = -1; for (var i = 0; i < entries.length; i++) { var _a = entries[i], row = _a.row, col = _a.col, value = _a.value; if (row !== currentRow) { currentRow = row; indptr.push(i); } indices.push(col); values.push(value); } return { indices: indices, values: values, indptr: indptr }; } exports.getCSR = getCSR; /***/ }), /* 4 */ /***/ (function(module, exports, __webpack_require__) { "use strict"; var __read = (this && this.__read) || function (o, n) { var m = typeof Symbol === "function" && o[Symbol.iterator]; if (!m) return o; var i = m.call(o), r, ar = [], e; try { while ((n === void 0 || n-- > 0) && !(r = i.next()).done) ar.push(r.value); } catch (error) { e = { error: error }; } finally { try { if (r && !r.done && (m = i["return"])) m.call(i); } finally { if (e) throw e.error; } } return ar; }; var __spread = (this && this.__spread) || function () { for (var ar = [], i = 0; i < arguments.length; i++) ar = ar.concat(__read(arguments[i])); return ar; }; var __values = (this && this.__values) || function (o) { var m = typeof Symbol === "function" && o[Symbol.iterator], i = 0; if (m) return m.call(o); return { next: function () { if (o && i >= o.length) o = void 0; return { value: o && o[i++], done: !o }; } }; }; var __importStar = (this && this.__importStar) || function (mod) { if (mod && mod.__esModule) return mod; var result = {}; if (mod != null) for (var k in mod) if (Object.hasOwnProperty.call(mod, k)) result[k] = mod[k]; result["default"] = mod; return result; }; Object.defineProperty(exports, "__esModule", { value: true }); var utils = __importStar(__webpack_require__(1)); var FlatTree = (function () { function FlatTree(hyperplanes, offsets, children, indices) { this.hyperplanes = hyperplanes; this.offsets = offsets; this.children = children; this.indices = indices; } return FlatTree; }()); exports.FlatTree = FlatTree; function makeForest(data, nNeighbors, nTrees, random) { var leafSize = Math.max(10, nNeighbors); var trees = utils .range(nTrees) .map(function (_, i) { return makeTree(data, leafSize, i, random); }); var forest = trees.map(function (tree) { return flattenTree(tree, leafSize); }); return forest; } exports.makeForest = makeForest; function makeTree(data, leafSize, n, random) { if (leafSize === void 0) { leafSize = 30; } var indices = utils.range(data.length); var tree = makeEuclideanTree(data, indices, leafSize, n, random); return tree; } function makeEuclideanTree(data, indices, leafSize, q, random) { if (leafSize === void 0) { leafSize = 30; } if (indices.length > leafSize) { var splitResults = euclideanRandomProjectionSplit(data, indices, random); var indicesLeft = splitResults.indicesLeft, indicesRight = splitResults.indicesRight, hyperplane = splitResults.hyperplane, offset = splitResults.offset; var leftChild = makeEuclideanTree(data, indicesLeft, leafSize, q + 1, random); var rightChild = makeEuclideanTree(data, indicesRight, leafSize, q + 1, random); var node = { leftChild: leftChild, rightChild: rightChild, isLeaf: false, hyperplane: hyperplane, offset: offset }; return node; } else { var node = { indices: indices, isLeaf: true }; return node; } } function euclideanRandomProjectionSplit(data, indices, random) { var dim = data[0].length; var leftIndex = utils.tauRandInt(indices.length, random); var rightIndex = utils.tauRandInt(indices.length, random); rightIndex += leftIndex === rightIndex ? 1 : 0; rightIndex = rightIndex % indices.length; var left = indices[leftIndex]; var right = indices[rightIndex]; var hyperplaneOffset = 0; var hyperplaneVector = utils.zeros(dim); for (var i = 0; i < hyperplaneVector.length; i++) { hyperplaneVector[i] = data[left][i] - data[right][i]; hyperplaneOffset -= (hyperplaneVector[i] * (data[left][i] + data[right][i])) / 2.0; } var nLeft = 0; var nRight = 0; var side = utils.zeros(indices.length); for (var i = 0; i < indices.length; i++) { var margin = hyperplaneOffset; for (var d = 0; d < dim; d++) { margin += hyperplaneVector[d] * data[indices[i]][d]; } if (margin === 0) { side[i] = utils.tauRandInt(2, random); if (side[i] === 0) { nLeft += 1; } else { nRight += 1; } } else if (margin > 0) { side[i] = 0; nLeft += 1; } else { side[i] = 1; nRight += 1; } } var indicesLeft = utils.zeros(nLeft); var indicesRight = utils.zeros(nRight); nLeft = 0; nRight = 0; for (var i in utils.range(side.length)) { if (side[i] === 0) { indicesLeft[nLeft] = indices[i]; nLeft += 1; } else { indicesRight[nRight] = indices[i]; nRight += 1; } } return { indicesLeft: indicesLeft, indicesRight: indicesRight, hyperplane: hyperplaneVector, offset: hyperplaneOffset, }; } function flattenTree(tree, leafSize) { var nNodes = numNodes(tree); var nLeaves = numLeaves(tree); var hyperplanes = utils .range(nNodes) .map(function () { return utils.zeros(tree.hyperplane.length); }); var offsets = utils.zeros(nNodes); var children = utils.range(nNodes).map(function () { return [-1, -1]; }); var indices = utils .range(nLeaves) .map(function () { return utils.range(leafSize).map(function () { return -1; }); }); recursiveFlatten(tree, hyperplanes, offsets, children, indices, 0, 0); return new FlatTree(hyperplanes, offsets, children, indices); } function recursiveFlatten(tree, hyperplanes, offsets, children, indices, nodeNum, leafNum) { var _a; if (tree.isLeaf) { children[nodeNum][0] = -leafNum; (_a = indices[leafNum]).splice.apply(_a, __spread([0, tree.indices.length], tree.indices)); leafNum += 1; return { nodeNum: nodeNum, leafNum: leafNum }; } else { hyperplanes[nodeNum] = tree.hyperplane; offsets[nodeNum] = tree.offset; children[nodeNum][0] = nodeNum + 1; var oldNodeNum = nodeNum; var res = recursiveFlatten(tree.leftChild, hyperplanes, offsets, children, indices, nodeNum + 1, leafNum); nodeNum = res.nodeNum; leafNum = res.leafNum; children[oldNodeNum][1] = nodeNum + 1; res = recursiveFlatten(tree.rightChild, hyperplanes, offsets, children, indices, nodeNum + 1, leafNum); return { nodeNum: res.nodeNum, leafNum: res.leafNum }; } } function numNodes(tree) { if (tree.isLeaf) { return 1; } else { return 1 + numNodes(tree.leftChild) + numNodes(tree.rightChild); } } function numLeaves(tree) { if (tree.isLeaf) { return 1; } else { return numLeaves(tree.leftChild) + numLeaves(tree.rightChild); } } function makeLeafArray(rpForest) { var e_1, _a; if (rpForest.length > 0) { var output = []; try { for (var rpForest_1 = __values(rpForest), rpForest_1_1 = rpForest_1.next(); !rpForest_1_1.done; rpForest_1_1 = rpForest_1.next()) { var tree = rpForest_1_1.value; output.push.apply(output, __spread(tree.indices)); } } catch (e_1_1) { e_1 = { error: e_1_1 }; } finally { try { if (rpForest_1_1 && !rpForest_1_1.done && (_a = rpForest_1.return)) _a.call(rpForest_1); } finally { if (e_1) throw e_1.error; } } return output; } else { return [[-1]]; } } exports.makeLeafArray = makeLeafArray; function selectSide(hyperplane, offset, point, random) { var margin = offset; for (var d = 0; d < point.length; d++) { margin += hyperplane[d] * point[d]; } if (margin === 0) { var side = utils.tauRandInt(2, random); return side; } else if (margin > 0) { return 0; } else { return 1; } } function searchFlatTree(point, tree, random) { var node = 0; while (tree.children[node][0] > 0) { var side = selectSide(tree.hyperplanes[node], tree.offsets[node], point, random); if (side === 0) { node = tree.children[node][0]; } else { node = tree.children[node][1]; } } var index = -1 * tree.children[node][0]; return tree.indices[index]; } exports.searchFlatTree = searchFlatTree; /***/ }), /* 5 */ /***/ (function(module, exports, __webpack_require__) { "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); var umap_1 = __webpack_require__(6); exports.UMAP = umap_1.UMAP; /***/ }), /* 6 */ /***/ (function(module, exports, __webpack_require__) { "use strict"; var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; var __read = (this && this.__read) || function (o, n) { var m = typeof Symbol === "function" && o[Symbol.iterator]; if (!m) return o; var i = m.call(o), r, ar = [], e; try { while ((n === void 0 || n-- > 0) && !(r = i.next()).done) ar.push(r.value); } catch (error) { e = { error: error }; } finally { try { if (r && !r.done && (m = i["return"])) m.call(i); } finally { if (e) throw e.error; } } return ar; }; var __spread = (this && this.__spread) || function () { for (var ar = [], i = 0; i < arguments.length; i++) ar = ar.concat(__read(arguments[i])); return ar; }; var __importStar = (this && this.__importStar) || function (mod) { if (mod && mod.__esModule) return mod; var result = {}; if (mod != null) for (var k in mod) if (Object.hasOwnProperty.call(mod, k)) result[k] = mod[k]; result["default"] = mod; return result; }; var __importDefault = (this && this.__importDefault) || function (mod) { return (mod && mod.__esModule) ? mod : { "default": mod }; }; Object.defineProperty(exports, "__esModule", { value: true }); var heap = __importStar(__webpack_require__(2)); var matrix = __importStar(__webpack_require__(3)); var nnDescent = __importStar(__webpack_require__(7)); var tree = __importStar(__webpack_require__(4)); var utils = __importStar(__webpack_require__(1)); var ml_levenberg_marquardt_1 = __importDefault(__webpack_require__(8)); var SMOOTH_K_TOLERANCE = 1e-5; var MIN_K_DIST_SCALE = 1e-3; var UMAP = (function () { function UMAP(params) { if (params === void 0) { params = {}; } var _this = this; this.learningRate = 1.0; this.localConnectivity = 1.0; this.minDist = 0.1; this.nComponents = 2; this.nEpochs = 0; this.nNeighbors = 15; this.negativeSampleRate = 5; this.random = Math.random; this.repulsionStrength = 1.0; this.setOpMixRatio = 1.0; this.spread = 1.0; this.transformQueueSize = 4.0; this.targetMetric = "categorical"; this.targetWeight = 0.5; this.targetNNeighbors = this.nNeighbors; this.distanceFn = euclidean; this.isInitialized = false; this.rpForest = []; this.embedding = []; this.optimizationState = new OptimizationState(); var setParam = function (key) { if (params[key] !== undefined) _this[key] = params[key]; }; setParam('distanceFn'); setParam('learningRate'); setParam('localConnectivity'); setParam('minDist'); setParam('nComponents'); setParam('nEpochs'); setParam('nNeighbors'); setParam('negativeSampleRate'); setParam('random'); setParam('repulsionStrength'); setParam('setOpMixRatio'); setParam('spread'); setParam('transformQueueSize'); } UMAP.prototype.fit = function (X) { this.initializeFit(X); this.optimizeLayout(); return this.embedding; }; UMAP.prototype.fitAsync = function (X, callback) { if (callback === void 0) { callback = function () { return true; }; } return __awaiter(this, void 0, void 0, function () { return __generator(this, function (_a) { switch (_a.label) { case 0: this.initializeFit(X); return [4, this.optimizeLayoutAsync(callback)]; case 1: _a.sent(); return [2, this.embedding]; } }); }); }; UMAP.prototype.setSupervisedProjection = function (Y, params) { if (params === void 0) { params = {}; } this.Y = Y; this.targetMetric = params.targetMetric || this.targetMetric; this.targetWeight = params.targetWeight || this.targetWeight; this.targetNNeighbors = params.targetNNeighbors || this.targetNNeighbors; }; UMAP.prototype.setPrecomputedKNN = function (knnIndices, knnDistances) { this.knnIndices = knnIndices; this.knnDistances = knnDistances; }; UMAP.prototype.initializeFit = function (X) { if (this.X === X && this.isInitialized) { return this.getNEpochs(); } this.X = X; if (!this.knnIndices && !this.knnDistances) { var knnResults = this.nearestNeighbors(X); this.knnIndices = knnResults.knnIndices; this.knnDistances = knnResults.knnDistances; } this.graph = this.fuzzySimplicialSet(X, this.nNeighbors, this.setOpMixRatio); this.makeSearchFns(); this.searchGraph = this.makeSearchGraph(X); this.processGraphForSupervisedProjection(); var _a = this.initializeSimplicialSetEmbedding(), head = _a.head, tail = _a.tail, epochsPerSample = _a.epochsPerSample; this.optimizationState.head = head; this.optimizationState.tail = tail; this.optimizationState.epochsPerSample = epochsPerSample; this.initializeOptimization(); this.prepareForOptimizationLoop(); this.isInitialized = true; return this.getNEpochs(); }; UMAP.prototype.makeSearchFns = function () { var _a = nnDescent.makeInitializations(this.distanceFn), initFromTree = _a.initFromTree, initFromRandom = _a.initFromRandom; this.initFromTree = initFromTree; this.initFromRandom = initFromRandom; this.search = nnDescent.makeInitializedNNSearch(this.distanceFn); }; UMAP.prototype.makeSearchGraph = function (X) { var knnIndices = this.knnIndices; var knnDistances = this.knnDistances; var dims = [X.length, X.length]; var searchGraph = new matrix.SparseMatrix([], [], [], dims); for (var i = 0; i < knnIndices.length; i++) { var knn = knnIndices[i]; var distances = knnDistances[i]; for (var j = 0; j < knn.length; j++) { var neighbor = knn[j]; var distance = distances[j]; if (distance > 0) { searchGraph.set(i, neighbor, distance); } } } var transpose = matrix.transpose(searchGraph); return matrix.maximum(searchGraph, transpose); }; UMAP.prototype.transform = function (toTransform) { var _this = this; var rawData = this.X; if (rawData === undefined || rawData.length === 0) { throw new Error('No data has been fit.'); } var nNeighbors = Math.floor(this.nNeighbors * this.transformQueueSize); var init = nnDescent.initializeSearch(this.rpForest, rawData, toTransform, nNeighbors, this.initFromRandom, this.initFromTree, this.random); var result = this.search(rawData, this.searchGraph, init, toTransform); var _a = heap.deheapSort(result), indices = _a.indices, distances = _a.weights; indices = indices.map(function (x) { return x.slice(0, _this.nNeighbors); }); distances = distances.map(function (x) { return x.slice(0, _this.nNeighbors); }); var adjustedLocalConnectivity = Math.max(0, this.localConnectivity - 1); var _b = this.smoothKNNDistance(distances, this.nNeighbors, adjustedLocalConnectivity), sigmas = _b.sigmas, rhos = _b.rhos; var _c = this.computeMembershipStrengths(indices, distances, sigmas, rhos), rows = _c.rows, cols = _c.cols, vals = _c.vals; var size = [toTransform.length, rawData.length]; var graph = new matrix.SparseMatrix(rows, cols, vals, size); var normed = matrix.normalize(graph, "l1"); var csrMatrix = matrix.getCSR(normed); var nPoints = toTransform.length; var eIndices = utils.reshape2d(csrMatrix.indices, nPoints, this.nNeighbors); var eWeights = utils.reshape2d(csrMatrix.values, nPoints, this.nNeighbors); var embedding = initTransform(eIndices, eWeights, this.embedding); var nEpochs = this.nEpochs ? this.nEpochs / 3 : graph.nRows <= 10000 ? 100 : 30; var graphMax = graph .getValues() .reduce(function (max, val) { return (val > max ? val : max); }, 0); graph = graph.map(function (value) { return (value < graphMax / nEpochs ? 0 : value); }); graph = matrix.eliminateZeros(graph); var epochsPerSample = this.makeEpochsPerSample(graph.getValues(), nEpochs); var head = graph.getRows(); var tail = graph.getCols(); this.assignOptimizationStateParameters({ headEmbedding: embedding, tailEmbedding: this.embedding, head: head, tail: tail, currentEpoch: 0, nEpochs: nEpochs, nVertices: graph.getDims()[1], epochsPerSample: epochsPerSample, }); this.prepareForOptimizationLoop(); return this.optimizeLayout(); }; UMAP.prototype.processGraphForSupervisedProjection = function () { var _a = this, Y = _a.Y, X = _a.X; if (Y) { if (Y.length !== X.length) { throw new Error('Length of X and y must be equal'); } if (this.targetMetric === "categorical") { var lt = this.targetWeight < 1.0; var farDist = lt ? 2.5 * (1.0 / (1.0 - this.targetWeight)) : 1.0e12; this.graph = this.categoricalSimplicialSetIntersection(this.graph, Y, farDist); } } }; UMAP.prototype.step = function () { var currentEpoch = this.optimizationState.currentEpoch; if (currentEpoch < this.getNEpochs()) { this.optimizeLayoutStep(currentEpoch); } return this.optimizationState.currentEpoch; }; UMAP.prototype.getEmbedding = function () { return this.embedding; }; UMAP.prototype.nearestNeighbors = function (X) { var _a = this, distanceFn = _a.distanceFn, nNeighbors = _a.nNeighbors; var log2 = function (n) { return Math.log(n) / Math.log(2); }; var metricNNDescent = nnDescent.makeNNDescent(distanceFn, this.random); var round = function (n) { return n === 0.5 ? 0 : Math.round(n); }; var nTrees = 5 + Math.floor(round(Math.pow(X.length, 0.5) / 20.0)); var nIters = Math.max(5, Math.floor(Math.round(log2(X.length)))); this.rpForest = tree.makeForest(X, nNeighbors, nTrees, this.random); var leafArray = tree.makeLeafArray(this.rpForest); var _b = metricNNDescent(X, leafArray, nNeighbors, nIters), indices = _b.indices, weights = _b.weights; return { knnIndices: indices, knnDistances: weights }; }; UMAP.prototype.fuzzySimplicialSet = function (X, nNeighbors, setOpMixRatio) { if (setOpMixRatio === void 0) { setOpMixRatio = 1.0; } var _a = this, _b = _a.knnIndices, knnIndices = _b === void 0 ? [] : _b, _c = _a.knnDistances, knnDistances = _c === void 0 ? [] : _c, localConnectivity = _a.localConnectivity; var _d = this.smoothKNNDistance(knnDistances, nNeighbors, localConnectivity), sigmas = _d.sigmas, rhos = _d.rhos; var _e = this.computeMembershipStrengths(knnIndices, knnDistances, sigmas, rhos), rows = _e.rows, cols = _e.cols, vals = _e.vals; var size = [X.length, X.length]; var sparseMatrix = new matrix.SparseMatrix(rows, cols, vals, size); var transpose = matrix.transpose(sparseMatrix); var prodMatrix = matrix.pairwiseMultiply(sparseMatrix, transpose); var a = matrix.subtract(matrix.add(sparseMatrix, transpose), prodMatrix); var b = matrix.multiplyScalar(a, setOpMixRatio); var c = matrix.multiplyScalar(prodMatrix, 1.0 - setOpMixRatio); var result = matrix.add(b, c); return result; }; UMAP.prototype.categoricalSimplicialSetIntersection = function (simplicialSet, target, farDist, unknownDist) { if (unknownDist === void 0) { unknownDist = 1.0; } var intersection = fastIntersection(simplicialSet, target, unknownDist, farDist); intersection = matrix.eliminateZeros(intersection); return resetLocalConnectivity(intersection); }; UMAP.prototype.smoothKNNDistance = function (distances, k, localConnectivity, nIter, bandwidth) { if (localConnectivity === void 0) { localConnectivity = 1.0; } if (nIter === void 0) { nIter = 64; } if (bandwidth === void 0) { bandwidth = 1.0; } var target = (Math.log(k) / Math.log(2)) * bandwidth; var rho = utils.zeros(distances.length); var result = utils.zeros(distances.length); for (var i = 0; i < distances.length; i++) { var lo = 0.0; var hi = Infinity; var mid = 1.0; var ithDistances = distances[i]; var nonZeroDists = ithDistances.filter(function (d) { return d > 0.0; }); if (nonZeroDists.length >= localConnectivity) { var index = Math.floor(localConnectivity); var interpolation = localConnectivity - index; if (index > 0) { rho[i] = nonZeroDists[index - 1]; if (interpolation > SMOOTH_K_TOLERANCE) { rho[i] += interpolation * (nonZeroDists[index] - nonZeroDists[index - 1]); } } else { rho[i] = interpolation * nonZeroDists[0]; } } else if (nonZeroDists.length > 0) { rho[i] = utils.max(nonZeroDists); } for (var n = 0; n < nIter; n++) { var psum = 0.0; for (var j = 1; j < distances[i].length; j++) { var d = distances[i][j] - rho[i]; if (d > 0) { psum += Math.exp(-(d / mid)); } else { psum += 1.0; } } if (Math.abs(psum - target) < SMOOTH_K_TOLERANCE) { break; } if (psum > target) { hi = mid; mid = (lo + hi) / 2.0; } else { lo = mid; if (hi === Infinity) { mid *= 2; } else { mid = (lo + hi) / 2.0; } } } result[i] = mid; if (rho[i] > 0.0) { var meanIthDistances = utils.mean(ithDistances); if (result[i] < MIN_K_DIST_SCALE * meanIthDistances) { result[i] = MIN_K_DIST_SCALE * meanIthDistances; } } else { var meanDistances = utils.mean(distances.map(utils.mean)); if (result[i] < MIN_K_DIST_SCALE * meanDistances) { result[i] = MIN_K_DIST_SCALE * meanDistances; } } } return { sigmas: result, rhos: rho }; }; UMAP.prototype.computeMembershipStrengths = function (knnIndices, knnDistances, sigmas, rhos) { var nSamples = knnIndices.length; var nNeighbors = knnIndices[0].length; var rows = utils.zeros(nSamples * nNeighbors); var cols = utils.zeros(nSamples * nNeighbors); var vals = utils.zeros(nSamples * nNeighbors); for (var i = 0; i < nSamples; i++) { for (var j = 0; j < nNeighbors; j++) { var val = 0; if (knnIndices[i][j] === -1) { continue; } if (knnIndices[i][j] === i) { val = 0.0; } else if (knnDistances[i][j] - rhos[i] <= 0.0) { val = 1.0; } else { val = Math.exp(-((knnDistances[i][j] - rhos[i]) / sigmas[i])); } rows[i * nNeighbors + j] = i; cols[i * nNeighbors + j] = knnIndices[i][j]; vals[i * nNeighbors + j] = val; } } return { rows: rows, cols: cols, vals: vals }; }; UMAP.prototype.initializeSimplicialSetEmbedding = function () { var _this = this; var nEpochs = this.getNEpochs(); var nComponents = this.nComponents; var graphValues = this.graph.getValues(); var graphMax = 0; for (var i = 0; i < graphValues.length; i++) { var value = graphValues[i]; if (graphMax < graphValues[i]) { graphMax = value; } } var graph = this.graph.map(function (value) { if (value < graphMax / nEpochs) { return 0; } else { return value; } }); this.embedding = utils.zeros(graph.nRows).map(function () { return utils.zeros(nComponents).map(function () { return utils.tauRand(_this.random) * 20 + -10; }); }); var weights = []; var head = []; var tail = []; for (var i = 0; i < graph.nRows; i++) { for (var j = 0; j < graph.nCols; j++) { var value = graph.get(i, j); if (value) { weights.push(value); tail.push(i); head.push(j); } } } var epochsPerSample = this.makeEpochsPerSample(weights, nEpochs); return { head: head, tail: tail, epochsPerSample: epochsPerSample }; }; UMAP.prototype.makeEpochsPerSample = function (weights, nEpochs) { var result = utils.filled(weights.length, -1.0); var max = utils.max(weights); var nSamples = weights.map(function (w) { return (w / max) * nEpochs; }); nSamples.forEach(function (n, i) { if (n > 0) result[i] = nEpochs / nSamples[i]; }); return result; }; UMAP.prototype.assignOptimizationStateParameters = function (state) { Object.assign(this.optimizationState, state); }; UMAP.prototype.prepareForOptimizationLoop = function () { var _a = this, repulsionStrength = _a.repulsionStrength, learningRate = _a.learningRate, negativeSampleRate = _a.negativeSampleRate; var _b = this.optimizationState, epochsPerSample = _b.epochsPerSample, headEmbedding = _b.headEmbedding, tailEmbedding = _b.tailEmbedding; var dim = headEmbedding[0].length; var moveOther = headEmbedding.length === tailEmbedding.length; var epochsPerNegativeSample = epochsPerSample.map(function (e) { return e / negativeSampleRate; }); var epochOfNextNegativeSample = __spread(epochsPerNegativeSample); var epochOfNextSample = __spread(epochsPerSample); this.assignOptimizationStateParameters({ epochOfNextSample: epochOfNextSample, epochOfNextNegativeSample: epochOfNextNegativeSample, epochsPerNegativeSample: epochsPerNegativeSample, moveOther: moveOther, initialAlpha: learningRate, alpha: learningRate, gamma: repulsionStrength, dim: dim, }); }; UMAP.prototype.initializeOptimization = function () { var headEmbedding = this.embedding; var tailEmbedding = this.embedding; var _a = this.optimizationState, head = _a.head, tail = _a.tail, epochsPerSample = _a.epochsPerSample; var nEpochs = this.getNEpochs(); var nVertices = this.graph.nCols; var _b = findABParams(this.spread, this.minDist), a = _b.a, b = _b.b; this.assignOptimizationStateParameters({ headEmbedding: headEmbedding, tailEmbedding: tailEmbedding, head: head, tail: tail, epochsPerSample: epochsPerSample, a: a, b: b, nEpochs: nEpochs, nVertices: nVertices, }); }; UMAP.prototype.optimizeLayoutStep = function (n) { var optimizationState = this.optimizationState; var head = optimizationState.head, tail = optimizationState.tail, headEmbedding = optimizationState.headEmbedding, tailEmbedding = optimizationState.tailEmbedding, epochsPerSample = optimizationState.epochsPerSample, epochOfNextSample = optimizationState.epochOfNextSample, epochOfNextNegativeSample = optimizationState.epochOfNextNegativeSample, epochsPerNegativeSample = optimizationState.epochsPerNegativeSample, moveOther = optimizationState.moveOther, initialAlpha = optimizationState.initialAlpha, alpha = optimizationState.alpha, gamma = optimizationState.gamma, a = optimizationState.a, b = optimizationState.b, dim = optimizationState.dim, nEpochs = optimizationState.nEpochs, nVertices = optimizationState.nVertices; var clipValue = 4.0; for (var i = 0; i < epochsPerSample.length; i++) { if (epochOfNextSample[i] > n) { continue; } var j = head[i]; var k = tail[i]; var current = headEmbedding[j]; var other = tailEmbedding[k]; var distSquared = rDist(current, other); var gradCoeff = 0; if (distSquared > 0) { gradCoeff = -2.0 * a * b * Math.pow(distSquared, b - 1.0); gradCoeff /= a * Math.pow(distSquared, b) + 1.0; } for (var d = 0; d < dim; d++) { var gradD = clip(gradCoeff * (current[d] - other[d]), clipValue); current[d] += gradD * alpha; if (moveOther) { other[d] += -gradD * alpha; } } epochOfNextSample[i] += epochsPerSample[i]; var nNegSamples = Math.floor((n - epochOfNextNegativeSample[i]) / epochsPerNegativeSample[i]); for (var p = 0; p < nNegSamples; p++) { var k_1 = utils.tauRandInt(nVertices, this.random); var other_1 = tailEmbedding[k_1]; var distSquared_1 = rDist(current, other_1); var gradCoeff_1 = 0.0; if (distSquared_1 > 0.0) { gradCoeff_1 = 2.0 * gamma * b; gradCoeff_1 /= (0.001 + distSquared_1) * (a * Math.pow(distSquared_1, b) + 1); } else if (j === k_1) { continue; } for (var d = 0; d < dim; d++) { var gradD = 4.0; if (gradCoeff_1 > 0.0) { gradD = clip(gradCoeff_1 * (current[d] - other_1[d]), clipValue); } current[d] += gradD * alpha; } } epochOfNextNegativeSample[i] += nNegSamples * epochsPerNegativeSample[i]; } optimizationState.alpha = initialAlpha * (1.0 - n / nEpochs); optimizationState.currentEpoch += 1; return headEmbedding; }; UMAP.prototype.optimizeLayoutAsync = function (epochCallback) { var _this = this; if (epochCallback === void 0) { epochCallback = function () { return true; }; } return new Promise(function (resolve, reject) { var step = function () { return __awaiter(_this, void 0, void 0, function () { var _a, nEpochs, currentEpoch, epochCompleted, shouldStop, isFinished; return __generator(this, function (_b) { try { _a = this.optimizationState, nEpochs = _a.nEpochs, currentEpoch = _a.currentEpoch; this.embedding = this.optimizeLayoutStep(currentEpoch); epochCompleted = this.optimizationState.currentEpoch; shouldStop = epochCallback(epochCompleted) === false; isFinished = epochCompleted === nEpochs; if (!shouldStop && !isFinished) { step(); } else { return [2, resolve(isFinished)]; } } catch (err) { reject(err); } return [2]; }); }); }; step(); }); }; UMAP.prototype.optimizeLayout = function (epochCallback) { if (epochCallback === void 0) { epochCallback = function () { return true; }; } var isFinished = false; var embedding = []; while (!isFinished) { var _a = this.optimizationState, nEpochs = _a.nEpochs, currentEpoch = _a.currentEpoch; embedding = this.optimizeLayoutStep(currentEpoch); var epochCompleted = this.optimizationState.currentEpoch; var shouldStop = epochCallback(epochCompleted) === false; isFinished = epochCompleted === nEpochs || shouldStop; } return embedding; }; UMAP.prototype.getNEpochs = function () { var graph = this.graph; if (this.nEpochs > 0) { return this.nEpochs; } var length = graph.nRows; if (length <= 2500) { return 500; } else if (length <= 5000) { return 400; } else if (length <= 7500) { return 300; } else { return 200; } }; return UMAP; }()); exports.UMAP = UMAP; function euclidean(x, y) { var result = 0; for (var i = 0; i < x.length; i++) { result += Math.pow((x[i] - y[i]), 2); } return Math.sqrt(result); } exports.euclidean = euclidean; function cosine(x, y) { var result = 0.0; var normX = 0.0; var normY = 0.0; for (var i = 0; i < x.length; i++) { result += x[i] * y[i]; normX += Math.pow(x[i], 2); normY += Math.pow(y[i], 2); } if (normX === 0 && normY === 0) { return 0; } else if (normX === 0 || normY === 0) { return 1.0; } else { return 1.0 - result / Math.sqrt(normX * normY); } } exports.cosine = cosine; var OptimizationState = (function () { function OptimizationState() { this.currentEpoch = 0; this.headEmbedding = []; this.tailEmbedding = []; this.head = []; this.tail = []; this.epochsPerSample = []; this.epochOfNextSample = []; this.epochOfNextNegativeSample = []; this.epochsPerNegativeSample = []; this.moveOther = true; this.initialAlpha = 1.0; this.alpha = 1.0; this.gamma = 1.0; this.a = 1.5769434603113077; this.b = 0.8950608779109733; this.dim = 2; this.nEpochs = 500; this.nVertices = 0; } return OptimizationState; }()); function clip(x, clipValue) { if (x > clipValue) return clipValue; else if (x < -clipValue) return -clipValue; else return x; } function rDist(x, y) { var result = 0.0; for (var i = 0; i < x.length; i++) { result += Math.pow(x[i] - y[i], 2); } return result; } function findABParams(spread, minDist) { var curve = function (_a) { var _b = __read(_a, 2), a = _b[0], b = _b[1]; return function (x) { return 1.0 / (1.0 + a * Math.pow(x, (2 * b))); }; }; var xv = utils .linear(0, spread * 3, 300) .map(function (val) { return (val < minDist ? 1.0 : val); }); var yv = utils.zeros(xv.length).map(function (val, index) { var gte = xv[index] >= minDist; return gte ? Math.exp(-(xv[index] - minDist) / spread) : val; }); var initialValues = [0.5, 0.5]; var data = { x: xv, y: yv }; var options = { damping: 1.5, initialValues: initialValues, gradientDifference: 10e-2, maxIterations: 100, errorTolerance: 10e-3, }; var parameterValues = ml_levenberg_marquardt_1.default(data, curve, options).parameterValues; var _a = __read(parameterValues, 2), a = _a[0], b = _a[1]; return { a: a, b: b }; } exports.findABParams = findABParams; function fastIntersection(graph, target, unknownDist, farDist) { if (unknownDist === void 0) { unknownDist = 1.0; } if (farDist === void 0) { farDist = 5.0; } return graph.map(function (value, row, col) { if (target[row] === -1 || target[col] === -1) { return value * Math.exp(-unknownDist); } else if (target[row] !== target[col]) { return value * Math.exp(-farDist); } else { return value; } }); } exports.fastIntersection = fastIntersection; function resetLocalConnectivity(simplicialSet) { simplicialSet = matrix.normalize(simplicialSet, "max"); var transpose = matrix.transpose(simplicialSet); var prodMatrix = matrix.pairwiseMultiply(transpose, simplicialSet); simplicialSet = matrix.add(simplicialSet, matrix.subtract(transpose, prodMatrix)); return matrix.eliminateZeros(simplicialSet); } exports.resetLocalConnectivity = resetLocalConnectivity; function initTransform(indices, weights, embedding) { var result = utils .zeros(indices.length) .map(function (z) { return utils.zeros(embedding[0].length); }); for (var i = 0; i < indices.length; i++) { for (var j = 0; j < indices[0].length; j++) { for (var d = 0; d < embedding[0].length; d++) { var a = indices[i][j]; result[i][d] += weights[i][j] * embedding[a][d]; } } } return result; } exports.initTransform = initTransform; /***/ }), /* 7 */ /***/ (function(module, exports, __webpack_require__) { "use strict"; var __values = (this && this.__values) || function (o) { var m = typeof Symbol === "function" && o[Symbol.iterator], i = 0; if (m) return m.call(o); return { next: function () { if (o && i >= o.length) o = void 0; return { value: o && o[i++], done: !o }; } }; }; var __importStar = (this && this.__importStar) || function (mod) { if (mod && mod.__esModule) return mod; var result = {}; if (mod != null) for (var k in mod) if (Object.hasOwnProperty.call(mod, k)) result[k] = mod[k]; result["default"] = mod; return result; }; Object.defineProperty(exports, "__esModule", { value: true }); var heap = __importStar(__webpack_require__(2)); var matrix = __importStar(__webpack_require__(3)); var tree = __importStar(__webpack_require__(4)); var utils = __importStar(__webpack_require__(1)); function makeNNDescent(distanceFn, random) { return function nNDescent(data, leafArray, nNeighbors, nIters, maxCandidates, delta, rho, rpTreeInit) { if (nIters === void 0) { nIters = 10; } if (maxCandidates === void 0) { maxCandidates = 50; } if (delta === void 0) { delta = 0.001; } if (rho === void 0) { rho = 0.5; } if (rpTreeInit === void 0) { rpTreeInit = true; } var nVertices = data.length; var currentGraph = heap.makeHeap(data.length, nNeighbors); for (var i = 0; i < data.length; i++) { var indices = heap.rejectionSample(nNeighbors, data.length, random); for (var j = 0; j < indices.length; j++) { var d = distanceFn(data[i], data[indices[j]]); heap.heapPush(currentGraph, i, d, indices[j], 1); heap.heapPush(currentGraph, indices[j], d, i, 1); } } if (rpTreeInit) { for (var n = 0; n < leafArray.length; n++) { for (var i = 0; i < leafArray[n].length; i++) { if (leafArray[n][i] < 0) { break; } for (var j = i + 1; j < leafArray[n].length; j++) { if (leafArray[n][j] < 0) { break; } var d = distanceFn(data[leafArray[n][i]], data[leafArray[n][j]]); heap.heapPush(currentGraph, leafArray[n][i], d, leafArray[n][j], 1); heap.heapPush(currentGraph, leafArray[n][j], d, leafArray[n][i], 1); } } } } for (var n = 0; n < nIters; n++) { var candidateNeighbors = heap.buildCandidates(currentGraph, nVertices, nNeighbors, maxCandidates, random); var c = 0; for (var i = 0; i < nVertices; i++) { for (var j = 0; j < maxCandidates; j++) { var p = Math.floor(candidateNeighbors[0][i][j]); if (p < 0 || utils.tauRand(random) < rho) { continue; } for (var k = 0; k < maxCandidates; k++) { var q = Math.floor(candidateNeighbors[0][i][k]); var cj = candidateNeighbors[2][i][j]; var ck = candidateNeighbors[2][i][k]; if (q < 0 || (!cj && !ck)) { continue; } var d = distanceFn(data[p], data[q]); c += heap.heapPush(currentGraph, p, d, q, 1); c += heap.heapPush(currentGraph, q, d, p, 1); } } } if (c <= delta * nNeighbors * data.length) { break; } } var sorted = heap.deheapSort(currentGraph); return sorted; }; } exports.makeNNDescent = makeNNDescent; function makeInitializations(distanceFn) { function initFromRandom(nNeighbors, data, queryPoints, _heap, random) { for (var i = 0; i < queryPoints.length; i++) { var indices = utils.rejectionSample(nNeighbors, data.length, random); for (var j = 0; j < indices.length; j++) { if (indices[j] < 0) { continue; } var d = distanceFn(data[indices[j]], queryPoints[i]); heap.heapPush(_heap, i, d, indices[j], 1); } } } function initFromTree(_tree, data, queryPoints, _heap, random) { for (var i = 0; i < queryPoints.length; i++) { var indices = tree.searchFlatTree(queryPoints[i], _tree, random); for (var j = 0; j < indices.length; j++) { if (indices[j] < 0) { return; } var d = distanceFn(data[indices[j]], queryPoints[i]); heap.heapPush(_heap, i, d, indices[j], 1); } } return; } return { initFromRandom: initFromRandom, initFromTree: initFromTree }; } exports.makeInitializations = makeInitializations; function makeInitializedNNSearch(distanceFn) { return function nnSearchFn(data, graph, initialization, queryPoints) { var e_1, _a; var _b = matrix.getCSR(graph), indices = _b.indices, indptr = _b.indptr; for (var i = 0; i < queryPoints.length; i++) { var tried = new Set(initialization[0][i]); while (true) { var vertex = heap.smallestFlagged(initialization, i); if (vertex === -1) { break; } var candidates = indices.slice(indptr[vertex], indptr[vertex + 1]); try { for (var candidates_1 = __values(candidates), candidates_1_1 = candidates_1.next(); !candidates_1_1.done; candidates_1_1 = candidates_1.next()) { var candidate = candidates_1_1.value; if (candidate === vertex || candidate === -1 || tried.has(candidate)) { continue; } var d = distanceFn(data[candidate], queryPoints[i]); heap.uncheckedHeapPush(initialization, i, d, candidate, 1); tried.add(candidate); } } catch (e_1_1) { e_1 = { error: e_1_1 }; } finally { try { if (candidates_1_1 && !candidates_1_1.done && (_a = candidates_1.return)) _a.call(candidates_1); } finally { if (e_1) throw e_1.error; } } } } return initialization; }; } exports.makeInitializedNNSearch = makeInitializedNNSearch; function initializeSearch(forest, data, queryPoints, nNeighbors, initFromRandom, initFromTree, random) { var e_2, _a; var results = heap.makeHeap(queryPoints.length, nNeighbors); initFromRandom(nNeighbors, data, queryPoints, results, random); if (forest) { try { for (var forest_1 = __values(forest), forest_1_1 = forest_1.next(); !forest_1_1.done; forest_1_1 = forest_1.next()) { var tree_1 = forest_1_1.value; initFromTree(tree_1, data, queryPoints, results, random); } } catch (e_2_1) { e_2 = { error: e_2_1 }; } finally { try { if (forest_1_1 && !forest_1_1.done && (_a = forest_1.return)) _a.call(forest_1); } finally { if (e_2) throw e_2.error; } } } return results; } exports.initializeSearch = initializeSearch; /***/ }), /* 8 */ /***/ (function(module, exports, __webpack_require__) { "use strict"; var mlMatrix = __webpack_require__(9); /** * Calculate current error * @ignore * @param {{x:Array, y:Array}} data - Array of points to fit in the format [x1, x2, ... ], [y1, y2, ... ] * @param {Array} parameters - Array of current parameter values * @param {function} parameterizedFunction - The parameters and returns a function with the independent variable as a parameter * @return {number} */ function errorCalculation( data, parameters, parameterizedFunction ) { var error = 0; const func = parameterizedFunction(parameters); for (var i = 0; i < data.x.length; i++) { error += Math.abs(data.y[i] - func(data.x[i])); } return error; } /** * Difference of the matrix function over the parameters * @ignore * @param {{x:Array, y:Array}} data - Array of points to fit in the format [x1, x2, ... ], [y1, y2, ... ] * @param {Array} evaluatedData - Array of previous evaluated function values * @param {Array} params - Array of previous parameter values * @param {number} gradientDifference - Adjustment for decrease the damping parameter * @param {function} paramFunction - The parameters and returns a function with the independent variable as a parameter * @return {Matrix} */ function gradientFunction( data, evaluatedData, params, gradientDifference, paramFunction ) { const n = params.length; const m = data.x.length; var ans = new Array(n); for (var param = 0; param < n; param++) { ans[param] = new Array(m); var auxParams = params.concat(); auxParams[param] += gradientDifference; var funcParam = paramFunction(auxParams); for (var point = 0; point < m; point++) { ans[param][point] = evaluatedData[point] - funcParam(data.x[point]); } } return new mlMatrix.Matrix(ans); } /** * Matrix function over the samples * @ignore * @param {{x:Array, y:Array}} data - Array of points to fit in the format [x1, x2, ... ], [y1, y2, ... ] * @param {Array} evaluatedData - Array of previous evaluated function values * @return {Matrix} */ function matrixFunction(data, evaluatedData) { const m = data.x.length; var ans = new Array(m); for (var point = 0; point < m; point++) { ans[point] = data.y[point] - evaluatedData[point]; } return new mlMatrix.Matrix([ans]); } /** * Iteration for Levenberg-Marquardt * @ignore * @param {{x:Array, y:Array}} data - Array of points to fit in the format [x1, x2, ... ], [y1, y2, ... ] * @param {Array} params - Array of previous parameter values * @param {number} damping - Levenberg-Marquardt parameter * @param {number} gradientDifference - Adjustment for decrease the damping parameter * @param {function} parameterizedFunction - The parameters and returns a function with the independent variable as a parameter * @return {Array} */ function step( data, params, damping, gradientDifference, parameterizedFunction ) { var identity = mlMatrix.Matrix.eye(params.length).mul( damping * gradientDifference * gradientDifference ); var l = data.x.length; var evaluatedData = new Array(l); const func = parameterizedFunction(params); for (var i = 0; i < l; i++) { evaluatedData[i] = func(data.x[i]); } var gradientFunc = gradientFunction( data, evaluatedData, params, gradientDifference, parameterizedFunction ); var matrixFunc = matrixFunction(data, evaluatedData).transposeView(); var inverseMatrix = mlMatrix.inverse( identity.add(gradientFunc.mmul(gradientFunc.transposeView())) ); params = new mlMatrix.Matrix([params]); params = params.sub( inverseMatrix .mmul(gradientFunc) .mmul(matrixFunc) .mul(gradientDifference) .transposeView() ); return params.to1DArray(); } /** * Curve fitting algorithm * @param {{x:Array, y:Array}} data - Array of points to fit in the format [x1, x2, ... ], [y1, y2, ... ] * @param {function} parameterizedFunction - The parameters and returns a function with the independent variable as a parameter * @param {object} [options] - Options object * @param {number} [options.damping] - Levenberg-Marquardt parameter * @param {number} [options.gradientDifference = 10e-2] - Adjustment for decrease the damping parameter * @param {Array} [options.initialValues] - Array of initial parameter values * @param {number} [options.maxIterations = 100] - Maximum of allowed iterations * @param {number} [options.errorTolerance = 10e-3] - Minimum uncertainty allowed for each point * @return {{parameterValues: Array, parameterError: number, iterations: number}} */ function levenbergMarquardt( data, parameterizedFunction, options = {} ) { let { maxIterations = 100, gradientDifference = 10e-2, damping = 0, errorTolerance = 10e-3, initialValues } = options; if (damping <= 0) { throw new Error('The damping option must be a positive number'); } else if (!data.x || !data.y) { throw new Error('The data parameter must have x and y elements'); } else if ( !Array.isArray(data.x) || data.x.length < 2 || !Array.isArray(data.y) || data.y.length < 2 ) { throw new Error( 'The data parameter elements must be an array with more than 2 points' ); } else { let dataLen = data.x.length; if (dataLen !== data.y.length) { throw new Error('The data parameter elements must have the same size'); } } var parameters = initialValues || new Array(parameterizedFunction.length).fill(1); if (!Array.isArray(parameters)) { throw new Error('initialValues must be an array'); } var error = errorCalculation(data, parameters, parameterizedFunction); var converged = error <= errorTolerance; for ( var iteration = 0; iteration < maxIterations && !converged; iteration++ ) { parameters = step( data, parameters, damping, gradientDifference, parameterizedFunction ); error = errorCalculation(data, parameters, parameterizedFunction); converged = error <= errorTolerance; } return { parameterValues: parameters, parameterError: error, iterations: iteration }; } module.exports = levenbergMarquardt; /***/ }), /* 9 */ /***/ (function(module, __webpack_exports__, __webpack_require__) { "use strict"; __webpack_require__.r(__webpack_exports__); // EXTERNAL MODULE: ./node_modules/is-any-array/src/index.js var src = __webpack_require__(0); var src_default = /*#__PURE__*/__webpack_require__.n(src); // CONCATENATED MODULE: ./node_modules/ml-array-max/lib-es6/index.js /** * Computes the maximum of the given values * @param {Array} input * @return {number} */ function lib_es6_max(input) { if (!src_default()(input)) { throw new TypeError('input must be an array'); } if (input.length === 0) { throw new TypeError('input must not be empty'); } var max = input[0]; for (var i = 1; i < input.length; i++) { if (input[i] > max) max = input[i]; } return max; } /* harmony default export */ var lib_es6 = (lib_es6_max); // CONCATENATED MODULE: ./node_modules/ml-array-min/lib-es6/index.js /** * Computes the minimum of the given values * @param {Array} input * @return {number} */ function lib_es6_min(input) { if (!src_default()(input)) { throw new TypeError('input must be an array'); } if (input.length === 0) { throw new TypeError('input must not be empty'); } var min = input[0]; for (var i = 1; i < input.length; i++) { if (input[i] < min) min = input[i]; } return min; } /* harmony default export */ var ml_array_min_lib_es6 = (lib_es6_min); // CONCATENATED MODULE: ./node_modules/ml-array-rescale/lib-es6/index.js function rescale(input) { var options = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : {}; if (!src_default()(input)) { throw new TypeError('input must be an array'); } else if (input.length === 0) { throw new TypeError('input must not be empty'); } var output; if (options.output !== undefined) { if (!src_default()(options.output)) { throw new TypeError('output option must be an array if specified'); } output = options.output; } else { output = new Array(input.length); } var currentMin = ml_array_min_lib_es6(input); var currentMax = lib_es6(input); if (currentMin === currentMax) { throw new RangeError('minimum and maximum input values are equal. Cannot rescale a constant array'); } var _options$min = options.min, minValue = _options$min === void 0 ? options.autoMinMax ? currentMin : 0 : _options$min, _options$max = options.max, maxValue = _options$max === void 0 ? options.autoMinMax ? currentMax : 1 : _options$max; if (minValue >= maxValue) { throw new RangeError('min option must be smaller than max option'); } var factor = (maxValue - minValue) / (currentMax - currentMin); for (var i = 0; i < input.length; i++) { output[i] = (input[i] - currentMin) * factor + minValue; } return output; } /* harmony default export */ var ml_array_rescale_lib_es6 = (rescale); // CONCATENATED MODULE: ./node_modules/ml-matrix/src/dc/lu.js /** * @class LuDecomposition * @link https://github.com/lutzroeder/Mapack/blob/master/Source/LuDecomposition.cs * @param {Matrix} matrix */ class lu_LuDecomposition { constructor(matrix) { matrix = WrapperMatrix2D_WrapperMatrix2D.checkMatrix(matrix); var lu = matrix.clone(); var rows = lu.rows; var columns = lu.columns; var pivotVector = new Array(rows); var pivotSign = 1; var i, j, k, p, s, t, v; var LUcolj, kmax; for (i = 0; i < rows; i++) { pivotVector[i] = i; } LUcolj = new Array(rows); for (j = 0; j < columns; j++) { for (i = 0; i < rows; i++) { LUcolj[i] = lu.get(i, j); } for (i = 0; i < rows; i++) { kmax = Math.min(i, j); s = 0; for (k = 0; k < kmax; k++) { s += lu.get(i, k) * LUcolj[k]; } LUcolj[i] -= s; lu.set(i, j, LUcolj[i]); } p = j; for (i = j + 1; i < rows; i++) { if (Math.abs(LUcolj[i]) > Math.abs(LUcolj[p])) { p = i; } } if (p !== j) { for (k = 0; k < columns; k++) { t = lu.get(p, k); lu.set(p, k, lu.get(j, k)); lu.set(j, k, t); } v = pivotVector[p]; pivotVector[p] = pivotVector[j]; pivotVector[j] = v; pivotSign = -pivotSign; } if (j < rows && lu.get(j, j) !== 0) { for (i = j + 1; i < rows; i++) { lu.set(i, j, lu.get(i, j) / lu.get(j, j)); } } } this.LU = lu; this.pivotVector = pivotVector; this.pivotSign = pivotSign; } /** * * @return {boolean} */ isSingular() { var data = this.LU; var col = data.columns; for (var j = 0; j < col; j++) { if (data[j][j] === 0) { return true; } } return false; } /** * * @param {Matrix} value * @return {Matrix} */ solve(value) { value = matrix_Matrix.checkMatrix(value); var lu = this.LU; var rows = lu.rows; if (rows !== value.rows) { throw new Error('Invalid matrix dimensions'); } if (this.isSingular()) { throw new Error('LU matrix is singular'); } var count = value.columns; var X = value.subMatrixRow(this.pivotVector, 0, count - 1); var columns = lu.columns; var i, j, k; for (k = 0; k < columns; k++) { for (i = k + 1; i < columns; i++) { for (j = 0; j < count; j++) { X[i][j] -= X[k][j] * lu[i][k]; } } } for (k = columns - 1; k >= 0; k--) { for (j = 0; j < count; j++) { X[k][j] /= lu[k][k]; } for (i = 0; i < k; i++) { for (j = 0; j < count; j++) { X[i][j] -= X[k][j] * lu[i][k]; } } } return X; } /** * * @return {number} */ get determinant() { var data = this.LU; if (!data.isSquare()) { throw new Error('Matrix must be square'); } var determinant = this.pivotSign; var col = data.columns; for (var j = 0; j < col; j++) { determinant *= data[j][j]; } return determinant; } /** * * @return {Matrix} */ get lowerTriangularMatrix() { var data = this.LU; var rows = data.rows; var columns = data.columns; var X = new matrix_Matrix(rows, columns); for (var i = 0; i < rows; i++) { for (var j = 0; j < columns; j++) { if (i > j) { X[i][j] = data[i][j]; } else if (i === j) { X[i][j] = 1; } else { X[i][j] = 0; } } } return X; } /** * * @return {Matrix} */ get upperTriangularMatrix() { var data = this.LU; var rows = data.rows; var columns = data.columns; var X = new matrix_Matrix(rows, columns); for (var i = 0; i < rows; i++) { for (var j = 0; j < columns; j++) { if (i <= j) { X[i][j] = data[i][j]; } else { X[i][j] = 0; } } } return X; } /** * * @return {Array} */ get pivotPermutationVector() { return this.pivotVector.slice(); } } // CONCATENATED MODULE: ./node_modules/ml-matrix/src/dc/util.js function hypotenuse(a, b) { var r = 0; if (Math.abs(a) > Math.abs(b)) { r = b / a; return Math.abs(a) * Math.sqrt(1 + r * r); } if (b !== 0) { r = a / b; return Math.abs(b) * Math.sqrt(1 + r * r); } return 0; } function getFilled2DArray(rows, columns, value) { var array = new Array(rows); for (var i = 0; i < rows; i++) { array[i] = new Array(columns); for (var j = 0; j < columns; j++) { array[i][j] = value; } } return array; } // CONCATENATED MODULE: ./node_modules/ml-matrix/src/dc/svd.js /** * @class SingularValueDecomposition * @see https://github.com/accord-net/framework/blob/development/Sources/Accord.Math/Decompositions/SingularValueDecomposition.cs * @param {Matrix} value * @param {object} [options] * @param {boolean} [options.computeLeftSingularVectors=true] * @param {boolean} [options.computeRightSingularVectors=true] * @param {boolean} [options.autoTranspose=false] */ class svd_SingularValueDecomposition { constructor(value, options = {}) { value = WrapperMatrix2D_WrapperMatrix2D.checkMatrix(value); var m = value.rows; var n = value.columns; const { computeLeftSingularVectors = true, computeRightSingularVectors = true, autoTranspose = false } = options; var wantu = Boolean(computeLeftSingularVectors); var wantv = Boolean(computeRightSingularVectors); var swapped = false; var a; if (m < n) { if (!autoTranspose) { a = value.clone(); // eslint-disable-next-line no-console console.warn( 'Computing SVD on a matrix with more columns than rows. Consider enabling autoTranspose' ); } else { a = value.transpose(); m = a.rows; n = a.columns; swapped = true; var aux = wantu; wantu = wantv; wantv = aux; } } else { a = value.clone(); } var nu = Math.min(m, n); var ni = Math.min(m + 1, n); var s = new Array(ni); var U = getFilled2DArray(m, nu, 0); var V = getFilled2DArray(n, n, 0); var e = new Array(n); var work = new Array(m); var si = new Array(ni); for (let i = 0; i < ni; i++) si[i] = i; var nct = Math.min(m - 1, n); var nrt = Math.max(0, Math.min(n - 2, m)); var mrc = Math.max(nct, nrt); for (let k = 0; k < mrc; k++) { if (k < nct) { s[k] = 0; for (let i = k; i < m; i++) { s[k] = hypotenuse(s[k], a[i][k]); } if (s[k] !== 0) { if (a[k][k] < 0) { s[k] = -s[k]; } for (let i = k; i < m; i++) { a[i][k] /= s[k]; } a[k][k] += 1; } s[k] = -s[k]; } for (let j = k + 1; j < n; j++) { if (k < nct && s[k] !== 0) { let t = 0; for (let i = k; i < m; i++) { t += a[i][k] * a[i][j]; } t = -t / a[k][k]; for (let i = k; i < m; i++) { a[i][j] += t * a[i][k]; } } e[j] = a[k][j]; } if (wantu && k < nct) { for (let i = k; i < m; i++) { U[i][k] = a[i][k]; } } if (k < nrt) { e[k] = 0; for (let i = k + 1; i < n; i++) { e[k] = hypotenuse(e[k], e[i]); } if (e[k] !== 0) { if (e[k + 1] < 0) { e[k] = 0 - e[k]; } for (let i = k + 1; i < n; i++) { e[i] /= e[k]; } e[k + 1] += 1; } e[k] = -e[k]; if (k + 1 < m && e[k] !== 0) { for (let i = k + 1; i < m; i++) { work[i] = 0; } for (let i = k + 1; i < m; i++) { for (let j = k + 1; j < n; j++) { work[i] += e[j] * a[i][j]; } } for (let j = k + 1; j < n; j++) { let t = -e[j] / e[k + 1]; for (let i = k + 1; i < m; i++) { a[i][j] += t * work[i]; } } } if (wantv) { for (let i = k + 1; i < n; i++) { V[i][k] = e[i]; } } } } let p = Math.min(n, m + 1); if (nct < n) { s[nct] = a[nct][nct]; } if (m < p) { s[p - 1] = 0; } if (nrt + 1 < p) { e[nrt] = a[nrt][p - 1]; } e[p - 1] = 0; if (wantu) { for (let j = nct; j < nu; j++) { for (let i = 0; i < m; i++) { U[i][j] = 0; } U[j][j] = 1; } for (let k = nct - 1; k >= 0; k--) { if (s[k] !== 0) { for (let j = k + 1; j < nu; j++) { let t = 0; for (let i = k; i < m; i++) { t += U[i][k] * U[i][j]; } t = -t / U[k][k]; for (let i = k; i < m; i++) { U[i][j] += t * U[i][k]; } } for (let i = k; i < m; i++) { U[i][k] = -U[i][k]; } U[k][k] = 1 + U[k][k]; for (let i = 0; i < k - 1; i++) { U[i][k] = 0; } } else { for (let i = 0; i < m; i++) { U[i][k] = 0; } U[k][k] = 1; } } } if (wantv) { for (let k = n - 1; k >= 0; k--) { if (k < nrt && e[k] !== 0) { for (let j = k + 1; j < n; j++) { let t = 0; for (let i = k + 1; i < n; i++) { t += V[i][k] * V[i][j]; } t = -t / V[k + 1][k]; for (let i = k + 1; i < n; i++) { V[i][j] += t * V[i][k]; } } } for (let i = 0; i < n; i++) { V[i][k] = 0; } V[k][k] = 1; } } var pp = p - 1; var iter = 0; var eps = Number.EPSILON; while (p > 0) { let k, kase; for (k = p - 2; k >= -1; k--) { if (k === -1) { break; } const alpha = Number.MIN_VALUE + eps * Math.abs(s[k] + Math.abs(s[k + 1])); if (Math.abs(e[k]) <= alpha || Number.isNaN(e[k])) { e[k] = 0; break; } } if (k === p - 2) { kase = 4; } else { let ks; for (ks = p - 1; ks >= k; ks--) { if (ks === k) { break; } let t = (ks !== p ? Math.abs(e[ks]) : 0) + (ks !== k + 1 ? Math.abs(e[ks - 1]) : 0); if (Math.abs(s[ks]) <= eps * t) { s[ks] = 0; break; } } if (ks === k) { kase = 3; } else if (ks === p - 1) { kase = 1; } else { kase = 2; k = ks; } } k++; switch (kase) { case 1: { let f = e[p - 2]; e[p - 2] = 0; for (let j = p - 2; j >= k; j--) { let t = hypotenuse(s[j], f); let cs = s[j] / t; let sn = f / t; s[j] = t; if (j !== k) { f = -sn * e[j - 1]; e[j - 1] = cs * e[j - 1]; } if (wantv) { for (let i = 0; i < n; i++) { t = cs * V[i][j] + sn * V[i][p - 1]; V[i][p - 1] = -sn * V[i][j] + cs * V[i][p - 1]; V[i][j] = t; } } } break; } case 2: { let f = e[k - 1]; e[k - 1] = 0; for (let j = k; j < p; j++) { let t = hypotenuse(s[j], f); let cs = s[j] / t; let sn = f / t; s[j] = t; f = -sn * e[j]; e[j] = cs * e[j]; if (wantu) { for (let i = 0; i < m; i++) { t = cs * U[i][j] + sn * U[i][k - 1]; U[i][k - 1] = -sn * U[i][j] + cs * U[i][k - 1]; U[i][j] = t; } } } break; } case 3: { const scale = Math.max( Math.abs(s[p - 1]), Math.abs(s[p - 2]), Math.abs(e[p - 2]), Math.abs(s[k]), Math.abs(e[k]) ); const sp = s[p - 1] / scale; const spm1 = s[p - 2] / scale; const epm1 = e[p - 2] / scale; const sk = s[k] / scale; const ek = e[k] / scale; const b = ((spm1 + sp) * (spm1 - sp) + epm1 * epm1) / 2; const c = sp * epm1 * (sp * epm1); let shift = 0; if (b !== 0 || c !== 0) { if (b < 0) { shift = 0 - Math.sqrt(b * b + c); } else { shift = Math.sqrt(b * b + c); } shift = c / (b + shift); } let f = (sk + sp) * (sk - sp) + shift; let g = sk * ek; for (let j = k; j < p - 1; j++) { let t = hypotenuse(f, g); if (t === 0) t = Number.MIN_VALUE; let cs = f / t; let sn = g / t; if (j !== k) { e[j - 1] = t; } f = cs * s[j] + sn * e[j]; e[j] = cs * e[j] - sn * s[j]; g = sn * s[j + 1]; s[j + 1] = cs * s[j + 1]; if (wantv) { for (let i = 0; i < n; i++) { t = cs * V[i][j] + sn * V[i][j + 1]; V[i][j + 1] = -sn * V[i][j] + cs * V[i][j + 1]; V[i][j] = t; } } t = hypotenuse(f, g); if (t === 0) t = Number.MIN_VALUE; cs = f / t; sn = g / t; s[j] = t; f = cs * e[j] + sn * s[j + 1]; s[j + 1] = -sn * e[j] + cs * s[j + 1]; g = sn * e[j + 1]; e[j + 1] = cs * e[j + 1]; if (wantu && j < m - 1) { for (let i = 0; i < m; i++) { t = cs * U[i][j] + sn * U[i][j + 1]; U[i][j + 1] = -sn * U[i][j] + cs * U[i][j + 1]; U[i][j] = t; } } } e[p - 2] = f; iter = iter + 1; break; } case 4: { if (s[k] <= 0) { s[k] = s[k] < 0 ? -s[k] : 0; if (wantv) { for (let i = 0; i <= pp; i++) { V[i][k] = -V[i][k]; } } } while (k < pp) { if (s[k] >= s[k + 1]) { break; } let t = s[k]; s[k] = s[k + 1]; s[k + 1] = t; if (wantv && k < n - 1) { for (let i = 0; i < n; i++) { t = V[i][k + 1]; V[i][k + 1] = V[i][k]; V[i][k] = t; } } if (wantu && k < m - 1) { for (let i = 0; i < m; i++) { t = U[i][k + 1]; U[i][k + 1] = U[i][k]; U[i][k] = t; } } k++; } iter = 0; p--; break; } // no default } } if (swapped) { var tmp = V; V = U; U = tmp; } this.m = m; this.n = n; this.s = s; this.U = U; this.V = V; } /** * Solve a problem of least square (Ax=b) by using the SVD. Useful when A is singular. When A is not singular, it would be better to use qr.solve(value). * Example : We search to approximate x, with A matrix shape m*n, x vector size n, b vector size m (m > n). We will use : * var svd = SingularValueDecomposition(A); * var x = svd.solve(b); * @param {Matrix} value - Matrix 1D which is the vector b (in the equation Ax = b) * @return {Matrix} - The vector x */ solve(value) { var Y = value; var e = this.threshold; var scols = this.s.length; var Ls = matrix_Matrix.zeros(scols, scols); for (let i = 0; i < scols; i++) { if (Math.abs(this.s[i]) <= e) { Ls[i][i] = 0; } else { Ls[i][i] = 1 / this.s[i]; } } var U = this.U; var V = this.rightSingularVectors; var VL = V.mmul(Ls); var vrows = V.rows; var urows = U.length; var VLU = matrix_Matrix.zeros(vrows, urows); for (let i = 0; i < vrows; i++) { for (let j = 0; j < urows; j++) { let sum = 0; for (let k = 0; k < scols; k++) { sum += VL[i][k] * U[j][k]; } VLU[i][j] = sum; } } return VLU.mmul(Y); } /** * * @param {Array} value * @return {Matrix} */ solveForDiagonal(value) { return this.solve(matrix_Matrix.diag(value)); } /** * Get the inverse of the matrix. We compute the inverse of a matrix using SVD when this matrix is singular or ill-conditioned. Example : * var svd = SingularValueDecomposition(A); * var inverseA = svd.inverse(); * @return {Matrix} - The approximation of the inverse of the matrix */ inverse() { var V = this.V; var e = this.threshold; var vrows = V.length; var vcols = V[0].length; var X = new matrix_Matrix(vrows, this.s.length); for (let i = 0; i < vrows; i++) { for (let j = 0; j < vcols; j++) { if (Math.abs(this.s[j]) > e) { X[i][j] = V[i][j] / this.s[j]; } else { X[i][j] = 0; } } } var U = this.U; var urows = U.length; var ucols = U[0].length; var Y = new matrix_Matrix(vrows, urows); for (let i = 0; i < vrows; i++) { for (let j = 0; j < urows; j++) { let sum = 0; for (let k = 0; k < ucols; k++) { sum += X[i][k] * U[j][k]; } Y[i][j] = sum; } } return Y; } /** * * @return {number} */ get condition() { return this.s[0] / this.s[Math.min(this.m, this.n) - 1]; } /** * * @return {number} */ get norm2() { return this.s[0]; } /** * * @return {number} */ get rank() { var tol = Math.max(this.m, this.n) * this.s[0] * Number.EPSILON; var r = 0; var s = this.s; for (var i = 0, ii = s.length; i < ii; i++) { if (s[i] > tol) { r++; } } return r; } /** * * @return {Array} */ get diagonal() { return this.s; } /** * * @return {number} */ get threshold() { return Number.EPSILON / 2 * Math.max(this.m, this.n) * this.s[0]; } /** * * @return {Matrix} */ get leftSingularVectors() { if (!matrix_Matrix.isMatrix(this.U)) { this.U = new matrix_Matrix(this.U); } return this.U; } /** * * @return {Matrix} */ get rightSingularVectors() { if (!matrix_Matrix.isMatrix(this.V)) { this.V = new matrix_Matrix(this.V); } return this.V; } /** * * @return {Matrix} */ get diagonalMatrix() { return matrix_Matrix.diag(this.s); } } // CONCATENATED MODULE: ./node_modules/ml-matrix/src/util.js /** * @private * Check that a row index is not out of bounds * @param {Matrix} matrix * @param {number} index * @param {boolean} [outer] */ function checkRowIndex(matrix, index, outer) { var max = outer ? matrix.rows : matrix.rows - 1; if (index < 0 || index > max) { throw new RangeError('Row index out of range'); } } /** * @private * Check that a column index is not out of bounds * @param {Matrix} matrix * @param {number} index * @param {boolean} [outer] */ function checkColumnIndex(matrix, index, outer) { var max = outer ? matrix.columns : matrix.columns - 1; if (index < 0 || index > max) { throw new RangeError('Column index out of range'); } } /** * @private * Check that the provided vector is an array with the right length * @param {Matrix} matrix * @param {Array|Matrix} vector * @return {Array} * @throws {RangeError} */ function checkRowVector(matrix, vector) { if (vector.to1DArray) { vector = vector.to1DArray(); } if (vector.length !== matrix.columns) { throw new RangeError( 'vector size must be the same as the number of columns' ); } return vector; } /** * @private * Check that the provided vector is an array with the right length * @param {Matrix} matrix * @param {Array|Matrix} vector * @return {Array} * @throws {RangeError} */ function checkColumnVector(matrix, vector) { if (vector.to1DArray) { vector = vector.to1DArray(); } if (vector.length !== matrix.rows) { throw new RangeError('vector size must be the same as the number of rows'); } return vector; } function checkIndices(matrix, rowIndices, columnIndices) { return { row: checkRowIndices(matrix, rowIndices), column: checkColumnIndices(matrix, columnIndices) }; } function checkRowIndices(matrix, rowIndices) { if (typeof rowIndices !== 'object') { throw new TypeError('unexpected type for row indices'); } var rowOut = rowIndices.some((r) => { return r < 0 || r >= matrix.rows; }); if (rowOut) { throw new RangeError('row indices are out of range'); } if (!Array.isArray(rowIndices)) rowIndices = Array.from(rowIndices); return rowIndices; } function checkColumnIndices(matrix, columnIndices) { if (typeof columnIndices !== 'object') { throw new TypeError('unexpected type for column indices'); } var columnOut = columnIndices.some((c) => { return c < 0 || c >= matrix.columns; }); if (columnOut) { throw new RangeError('column indices are out of range'); } if (!Array.isArray(columnIndices)) columnIndices = Array.from(columnIndices); return columnIndices; } function checkRange(matrix, startRow, endRow, startColumn, endColumn) { if (arguments.length !== 5) { throw new RangeError('expected 4 arguments'); } checkNumber('startRow', startRow); checkNumber('endRow', endRow); checkNumber('startColumn', startColumn); checkNumber('endColumn', endColumn); if ( startRow > endRow || startColumn > endColumn || startRow < 0 || startRow >= matrix.rows || endRow < 0 || endRow >= matrix.rows || startColumn < 0 || startColumn >= matrix.columns || endColumn < 0 || endColumn >= matrix.columns ) { throw new RangeError('Submatrix indices are out of range'); } } function getRange(from, to) { var arr = new Array(to - from + 1); for (var i = 0; i < arr.length; i++) { arr[i] = from + i; } return arr; } function sumByRow(matrix) { var sum = matrix_Matrix.zeros(matrix.rows, 1); for (var i = 0; i < matrix.rows; ++i) { for (var j = 0; j < matrix.columns; ++j) { sum.set(i, 0, sum.get(i, 0) + matrix.get(i, j)); } } return sum; } function sumByColumn(matrix) { var sum = matrix_Matrix.zeros(1, matrix.columns); for (var i = 0; i < matrix.rows; ++i) { for (var j = 0; j < matrix.columns; ++j) { sum.set(0, j, sum.get(0, j) + matrix.get(i, j)); } } return sum; } function sumAll(matrix) { var v = 0; for (var i = 0; i < matrix.rows; i++) { for (var j = 0; j < matrix.columns; j++) { v += matrix.get(i, j); } } return v; } function checkNumber(name, value) { if (typeof value !== 'number') { throw new TypeError(`${name} must be a number`); } } // CONCATENATED MODULE: ./node_modules/ml-matrix/src/views/base.js class base_BaseView extends AbstractMatrix() { constructor(matrix, rows, columns) { super(); this.matrix = matrix; this.rows = rows; this.columns = columns; } static get [Symbol.species]() { return matrix_Matrix; } } // CONCATENATED MODULE: ./node_modules/ml-matrix/src/views/transpose.js class transpose_MatrixTransposeView extends base_BaseView { constructor(matrix) { super(matrix, matrix.columns, matrix.rows); } set(rowIndex, columnIndex, value) { this.matrix.set(columnIndex, rowIndex, value); return this; } get(rowIndex, columnIndex) { return this.matrix.get(columnIndex, rowIndex); } } // CONCATENATED MODULE: ./node_modules/ml-matrix/src/views/row.js class row_MatrixRowView extends base_BaseView { constructor(matrix, row) { super(matrix, 1, matrix.columns); this.row = row; } set(rowIndex, columnIndex, value) { this.matrix.set(this.row, columnIndex, value); return this; } get(rowIndex, columnIndex) { return this.matrix.get(this.row, columnIndex); } } // CONCATENATED MODULE: ./node_modules/ml-matrix/src/views/sub.js class sub_MatrixSubView extends base_BaseView { constructor(matrix, startRow, endRow, startColumn, endColumn) { checkRange(matrix, startRow, endRow, startColumn, endColumn); super(matrix, endRow - startRow + 1, endColumn - startColumn + 1); this.startRow = startRow; this.startColumn = startColumn; } set(rowIndex, columnIndex, value) { this.matrix.set( this.startRow + rowIndex, this.startColumn + columnIndex, value ); return this; } get(rowIndex, columnIndex) { return this.matrix.get( this.startRow + rowIndex, this.startColumn + columnIndex ); } } // CONCATENATED MODULE: ./node_modules/ml-matrix/src/views/selection.js class selection_MatrixSelectionView extends base_BaseView { constructor(matrix, rowIndices, columnIndices) { var indices = checkIndices(matrix, rowIndices, columnIndices); super(matrix, indices.row.length, indices.column.length); this.rowIndices = indices.row; this.columnIndices = indices.column; } set(rowIndex, columnIndex, value) { this.matrix.set( this.rowIndices[rowIndex], this.columnIndices[columnIndex], value ); return this; } get(rowIndex, columnIndex) { return this.matrix.get( this.rowIndices[rowIndex], this.columnIndices[columnIndex] ); } } // CONCATENATED MODULE: ./node_modules/ml-matrix/src/views/rowSelection.js class rowSelection_MatrixRowSelectionView extends base_BaseView { constructor(matrix, rowIndices) { rowIndices = checkRowIndices(matrix, rowIndices); super(matrix, rowIndices.length, matrix.columns); this.rowIndices = rowIndices; } set(rowIndex, columnIndex, value) { this.matrix.set(this.rowIndices[rowIndex], columnIndex, value); return this; } get(rowIndex, columnIndex) { return this.matrix.get(this.rowIndices[rowIndex], columnIndex); } } // CONCATENATED MODULE: ./node_modules/ml-matrix/src/views/columnSelection.js class columnSelection_MatrixColumnSelectionView extends base_BaseView { constructor(matrix, columnIndices) { columnIndices = checkColumnIndices(matrix, columnIndices); super(matrix, matrix.rows, columnIndices.length); this.columnIndices = columnIndices; } set(rowIndex, columnIndex, value) { this.matrix.set(rowIndex, this.columnIndices[columnIndex], value); return this; } get(rowIndex, columnIndex) { return this.matrix.get(rowIndex, this.columnIndices[columnIndex]); } } // CONCATENATED MODULE: ./node_modules/ml-matrix/src/views/column.js class column_MatrixColumnView extends base_BaseView { constructor(matrix, column) { super(matrix, matrix.rows, 1); this.column = column; } set(rowIndex, columnIndex, value) { this.matrix.set(rowIndex, this.column, value); return this; } get(rowIndex) { return this.matrix.get(rowIndex, this.column); } } // CONCATENATED MODULE: ./node_modules/ml-matrix/src/views/flipRow.js class flipRow_MatrixFlipRowView extends base_BaseView { constructor(matrix) { super(matrix, matrix.rows, matrix.columns); } set(rowIndex, columnIndex, value) { this.matrix.set(this.rows - rowIndex - 1, columnIndex, value); return this; } get(rowIndex, columnIndex) { return this.matrix.get(this.rows - rowIndex - 1, columnIndex); } } // CONCATENATED MODULE: ./node_modules/ml-matrix/src/views/flipColumn.js class flipColumn_MatrixFlipColumnView extends base_BaseView { constructor(matrix) { super(matrix, matrix.rows, matrix.columns); } set(rowIndex, columnIndex, value) { this.matrix.set(rowIndex, this.columns - columnIndex - 1, value); return this; } get(rowIndex, columnIndex) { return this.matrix.get(rowIndex, this.columns - columnIndex - 1); } } // CONCATENATED MODULE: ./node_modules/ml-matrix/src/abstractMatrix.js function AbstractMatrix(superCtor) { if (superCtor === undefined) superCtor = Object; /** * Real matrix * @class Matrix * @param {number|Array|Matrix} nRows - Number of rows of the new matrix, * 2D array containing the data or Matrix instance to clone * @param {number} [nColumns] - Number of columns of the new matrix */ class Matrix extends superCtor { static get [Symbol.species]() { return this; } /** * Constructs a Matrix with the chosen dimensions from a 1D array * @param {number} newRows - Number of rows * @param {number} newColumns - Number of columns * @param {Array} newData - A 1D array containing data for the matrix * @return {Matrix} - The new matrix */ static from1DArray(newRows, newColumns, newData) { var length = newRows * newColumns; if (length !== newData.length) { throw new RangeError('Data length does not match given dimensions'); } var newMatrix = new this(newRows, newColumns); for (var row = 0; row < newRows; row++) { for (var column = 0; column < newColumns; column++) { newMatrix.set(row, column, newData[row * newColumns + column]); } } return newMatrix; } /** * Creates a row vector, a matrix with only one row. * @param {Array} newData - A 1D array containing data for the vector * @return {Matrix} - The new matrix */ static rowVector(newData) { var vector = new this(1, newData.length); for (var i = 0; i < newData.length; i++) { vector.set(0, i, newData[i]); } return vector; } /** * Creates a column vector, a matrix with only one column. * @param {Array} newData - A 1D array containing data for the vector * @return {Matrix} - The new matrix */ static columnVector(newData) { var vector = new this(newData.length, 1); for (var i = 0; i < newData.length; i++) { vector.set(i, 0, newData[i]); } return vector; } /** * Creates an empty matrix with the given dimensions. Values will be undefined. Same as using new Matrix(rows, columns). * @param {number} rows - Number of rows * @param {number} columns - Number of columns * @return {Matrix} - The new matrix */ static empty(rows, columns) { return new this(rows, columns); } /** * Creates a matrix with the given dimensions. Values will be set to zero. * @param {number} rows - Number of rows * @param {number} columns - Number of columns * @return {Matrix} - The new matrix */ static zeros(rows, columns) { return this.empty(rows, columns).fill(0); } /** * Creates a matrix with the given dimensions. Values will be set to one. * @param {number} rows - Number of rows * @param {number} columns - Number of columns * @return {Matrix} - The new matrix */ static ones(rows, columns) { return this.empty(rows, columns).fill(1); } /** * Creates a matrix with the given dimensions. Values will be randomly set. * @param {number} rows - Number of rows * @param {number} columns - Number of columns * @param {function} [rng=Math.random] - Random number generator * @return {Matrix} The new matrix */ static rand(rows, columns, rng) { if (rng === undefined) rng = Math.random; var matrix = this.empty(rows, columns); for (var i = 0; i < rows; i++) { for (var j = 0; j < columns; j++) { matrix.set(i, j, rng()); } } return matrix; } /** * Creates a matrix with the given dimensions. Values will be random integers. * @param {number} rows - Number of rows * @param {number} columns - Number of columns * @param {number} [maxValue=1000] - Maximum value * @param {function} [rng=Math.random] - Random number generator * @return {Matrix} The new matrix */ static randInt(rows, columns, maxValue, rng) { if (maxValue === undefined) maxValue = 1000; if (rng === undefined) rng = Math.random; var matrix = this.empty(rows, columns); for (var i = 0; i < rows; i++) { for (var j = 0; j < columns; j++) { var value = Math.floor(rng() * maxValue); matrix.set(i, j, value); } } return matrix; } /** * Creates an identity matrix with the given dimension. Values of the diagonal will be 1 and others will be 0. * @param {number} rows - Number of rows * @param {number} [columns=rows] - Number of columns * @param {number} [value=1] - Value to fill the diagonal with * @return {Matrix} - The new identity matrix */ static eye(rows, columns, value) { if (columns === undefined) columns = rows; if (value === undefined) value = 1; var min = Math.min(rows, columns); var matrix = this.zeros(rows, columns); for (var i = 0; i < min; i++) { matrix.set(i, i, value); } return matrix; } /** * Creates a diagonal matrix based on the given array. * @param {Array} data - Array containing the data for the diagonal * @param {number} [rows] - Number of rows (Default: data.length) * @param {number} [columns] - Number of columns (Default: rows) * @return {Matrix} - The new diagonal matrix */ static diag(data, rows, columns) { var l = data.length; if (rows === undefined) rows = l; if (columns === undefined) columns = rows; var min = Math.min(l, rows, columns); var matrix = this.zeros(rows, columns); for (var i = 0; i < min; i++) { matrix.set(i, i, data[i]); } return matrix; } /** * Returns a matrix whose elements are the minimum between matrix1 and matrix2 * @param {Matrix} matrix1 * @param {Matrix} matrix2 * @return {Matrix} */ static min(matrix1, matrix2) { matrix1 = this.checkMatrix(matrix1); matrix2 = this.checkMatrix(matrix2); var rows = matrix1.rows; var columns = matrix1.columns; var result = new this(rows, columns); for (var i = 0; i < rows; i++) { for (var j = 0; j < columns; j++) { result.set(i, j, Math.min(matrix1.get(i, j), matrix2.get(i, j))); } } return result; } /** * Returns a matrix whose elements are the maximum between matrix1 and matrix2 * @param {Matrix} matrix1 * @param {Matrix} matrix2 * @return {Matrix} */ static max(matrix1, matrix2) { matrix1 = this.checkMatrix(matrix1); matrix2 = this.checkMatrix(matrix2); var rows = matrix1.rows; var columns = matrix1.columns; var result = new this(rows, columns); for (var i = 0; i < rows; i++) { for (var j = 0; j < columns; j++) { result.set(i, j, Math.max(matrix1.get(i, j), matrix2.get(i, j))); } } return result; } /** * Check that the provided value is a Matrix and tries to instantiate one if not * @param {*} value - The value to check * @return {Matrix} */ static checkMatrix(value) { return Matrix.isMatrix(value) ? value : new this(value); } /** * Returns true if the argument is a Matrix, false otherwise * @param {*} value - The value to check * @return {boolean} */ static isMatrix(value) { return (value != null) && (value.klass === 'Matrix'); } /** * @prop {number} size - The number of elements in the matrix. */ get size() { return this.rows * this.columns; } /** * Applies a callback for each element of the matrix. The function is called in the matrix (this) context. * @param {function} callback - Function that will be called with two parameters : i (row) and j (column) * @return {Matrix} this */ apply(callback) { if (typeof callback !== 'function') { throw new TypeError('callback must be a function'); } var ii = this.rows; var jj = this.columns; for (var i = 0; i < ii; i++) { for (var j = 0; j < jj; j++) { callback.call(this, i, j); } } return this; } /** * Returns a new 1D array filled row by row with the matrix values * @return {Array} */ to1DArray() { var array = new Array(this.size); for (var i = 0; i < this.rows; i++) { for (var j = 0; j < this.columns; j++) { array[i * this.columns + j] = this.get(i, j); } } return array; } /** * Returns a 2D array containing a copy of the data * @return {Array} */ to2DArray() { var copy = new Array(this.rows); for (var i = 0; i < this.rows; i++) { copy[i] = new Array(this.columns); for (var j = 0; j < this.columns; j++) { copy[i][j] = this.get(i, j); } } return copy; } /** * @return {boolean} true if the matrix has one row */ isRowVector() { return this.rows === 1; } /** * @return {boolean} true if the matrix has one column */ isColumnVector() { return this.columns === 1; } /** * @return {boolean} true if the matrix has one row or one column */ isVector() { return (this.rows === 1) || (this.columns === 1); } /** * @return {boolean} true if the matrix has the same number of rows and columns */ isSquare() { return this.rows === this.columns; } /** * @return {boolean} true if the matrix is square and has the same values on both sides of the diagonal */ isSymmetric() { if (this.isSquare()) { for (var i = 0; i < this.rows; i++) { for (var j = 0; j <= i; j++) { if (this.get(i, j) !== this.get(j, i)) { return false; } } } return true; } return false; } /** * Sets a given element of the matrix. mat.set(3,4,1) is equivalent to mat[3][4]=1 * @abstract * @param {number} rowIndex - Index of the row * @param {number} columnIndex - Index of the column * @param {number} value - The new value for the element * @return {Matrix} this */ set(rowIndex, columnIndex, value) { // eslint-disable-line no-unused-vars throw new Error('set method is unimplemented'); } /** * Returns the given element of the matrix. mat.get(3,4) is equivalent to matrix[3][4] * @abstract * @param {number} rowIndex - Index of the row * @param {number} columnIndex - Index of the column * @return {number} */ get(rowIndex, columnIndex) { // eslint-disable-line no-unused-vars throw new Error('get method is unimplemented'); } /** * Creates a new matrix that is a repetition of the current matrix. New matrix has rowRep times the number of * rows of the matrix, and colRep times the number of columns of the matrix * @param {number} rowRep - Number of times the rows should be repeated * @param {number} colRep - Number of times the columns should be re * @return {Matrix} * @example * var matrix = new Matrix([[1,2]]); * matrix.repeat(2); // [[1,2],[1,2]] */ repeat(rowRep, colRep) { rowRep = rowRep || 1; colRep = colRep || 1; var matrix = new this.constructor[Symbol.species](this.rows * rowRep, this.columns * colRep); for (var i = 0; i < rowRep; i++) { for (var j = 0; j < colRep; j++) { matrix.setSubMatrix(this, this.rows * i, this.columns * j); } } return matrix; } /** * Fills the matrix with a given value. All elements will be set to this value. * @param {number} value - New value * @return {Matrix} this */ fill(value) { for (var i = 0; i < this.rows; i++) { for (var j = 0; j < this.columns; j++) { this.set(i, j, value); } } return this; } /** * Negates the matrix. All elements will be multiplied by (-1) * @return {Matrix} this */ neg() { return this.mulS(-1); } /** * Returns a new array from the given row index * @param {number} index - Row index * @return {Array} */ getRow(index) { checkRowIndex(this, index); var row = new Array(this.columns); for (var i = 0; i < this.columns; i++) { row[i] = this.get(index, i); } return row; } /** * Returns a new row vector from the given row index * @param {number} index - Row index * @return {Matrix} */ getRowVector(index) { return this.constructor.rowVector(this.getRow(index)); } /** * Sets a row at the given index * @param {number} index - Row index * @param {Array|Matrix} array - Array or vector * @return {Matrix} this */ setRow(index, array) { checkRowIndex(this, index); array = checkRowVector(this, array); for (var i = 0; i < this.columns; i++) { this.set(index, i, array[i]); } return this; } /** * Swaps two rows * @param {number} row1 - First row index * @param {number} row2 - Second row index * @return {Matrix} this */ swapRows(row1, row2) { checkRowIndex(this, row1); checkRowIndex(this, row2); for (var i = 0; i < this.columns; i++) { var temp = this.get(row1, i); this.set(row1, i, this.get(row2, i)); this.set(row2, i, temp); } return this; } /** * Returns a new array from the given column index * @param {number} index - Column index * @return {Array} */ getColumn(index) { checkColumnIndex(this, index); var column = new Array(this.rows); for (var i = 0; i < this.rows; i++) { column[i] = this.get(i, index); } return column; } /** * Returns a new column vector from the given column index * @param {number} index - Column index * @return {Matrix} */ getColumnVector(index) { return this.constructor.columnVector(this.getColumn(index)); } /** * Sets a column at the given index * @param {number} index - Column index * @param {Array|Matrix} array - Array or vector * @return {Matrix} this */ setColumn(index, array) { checkColumnIndex(this, index); array = checkColumnVector(this, array); for (var i = 0; i < this.rows; i++) { this.set(i, index, array[i]); } return this; } /** * Swaps two columns * @param {number} column1 - First column index * @param {number} column2 - Second column index * @return {Matrix} this */ swapColumns(column1, column2) { checkColumnIndex(this, column1); checkColumnIndex(this, column2); for (var i = 0; i < this.rows; i++) { var temp = this.get(i, column1); this.set(i, column1, this.get(i, column2)); this.set(i, column2, temp); } return this; } /** * Adds the values of a vector to each row * @param {Array|Matrix} vector - Array or vector * @return {Matrix} this */ addRowVector(vector) { vector = checkRowVector(this, vector); for (var i = 0; i < this.rows; i++) { for (var j = 0; j < this.columns; j++) { this.set(i, j, this.get(i, j) + vector[j]); } } return this; } /** * Subtracts the values of a vector from each row * @param {Array|Matrix} vector - Array or vector * @return {Matrix} this */ subRowVector(vector) { vector = checkRowVector(this, vector); for (var i = 0; i < this.rows; i++) { for (var j = 0; j < this.columns; j++) { this.set(i, j, this.get(i, j) - vector[j]); } } return this; } /** * Multiplies the values of a vector with each row * @param {Array|Matrix} vector - Array or vector * @return {Matrix} this */ mulRowVector(vector) { vector = checkRowVector(this, vector); for (var i = 0; i < this.rows; i++) { for (var j = 0; j < this.columns; j++) { this.set(i, j, this.get(i, j) * vector[j]); } } return this; } /** * Divides the values of each row by those of a vector * @param {Array|Matrix} vector - Array or vector * @return {Matrix} this */ divRowVector(vector) { vector = checkRowVector(this, vector); for (var i = 0; i < this.rows; i++) { for (var j = 0; j < this.columns; j++) { this.set(i, j, this.get(i, j) / vector[j]); } } return this; } /** * Adds the values of a vector to each column * @param {Array|Matrix} vector - Array or vector * @return {Matrix} this */ addColumnVector(vector) { vector = checkColumnVector(this, vector); for (var i = 0; i < this.rows; i++) { for (var j = 0; j < this.columns; j++) { this.set(i, j, this.get(i, j) + vector[i]); } } return this; } /** * Subtracts the values of a vector from each column * @param {Array|Matrix} vector - Array or vector * @return {Matrix} this */ subColumnVector(vector) { vector = checkColumnVector(this, vector); for (var i = 0; i < this.rows; i++) { for (var j = 0; j < this.columns; j++) { this.set(i, j, this.get(i, j) - vector[i]); } } return this; } /** * Multiplies the values of a vector with each column * @param {Array|Matrix} vector - Array or vector * @return {Matrix} this */ mulColumnVector(vector) { vector = checkColumnVector(this, vector); for (var i = 0; i < this.rows; i++) { for (var j = 0; j < this.columns; j++) { this.set(i, j, this.get(i, j) * vector[i]); } } return this; } /** * Divides the values of each column by those of a vector * @param {Array|Matrix} vector - Array or vector * @return {Matrix} this */ divColumnVector(vector) { vector = checkColumnVector(this, vector); for (var i = 0; i < this.rows; i++) { for (var j = 0; j < this.columns; j++) { this.set(i, j, this.get(i, j) / vector[i]); } } return this; } /** * Multiplies the values of a row with a scalar * @param {number} index - Row index * @param {number} value * @return {Matrix} this */ mulRow(index, value) { checkRowIndex(this, index); for (var i = 0; i < this.columns; i++) { this.set(index, i, this.get(index, i) * value); } return this; } /** * Multiplies the values of a column with a scalar * @param {number} index - Column index * @param {number} value * @return {Matrix} this */ mulColumn(index, value) { checkColumnIndex(this, index); for (var i = 0; i < this.rows; i++) { this.set(i, index, this.get(i, index) * value); } return this; } /** * Returns the maximum value of the matrix * @return {number} */ max() { var v = this.get(0, 0); for (var i = 0; i < this.rows; i++) { for (var j = 0; j < this.columns; j++) { if (this.get(i, j) > v) { v = this.get(i, j); } } } return v; } /** * Returns the index of the maximum value * @return {Array} */ maxIndex() { var v = this.get(0, 0); var idx = [0, 0]; for (var i = 0; i < this.rows; i++) { for (var j = 0; j < this.columns; j++) { if (this.get(i, j) > v) { v = this.get(i, j); idx[0] = i; idx[1] = j; } } } return idx; } /** * Returns the minimum value of the matrix * @return {number} */ min() { var v = this.get(0, 0); for (var i = 0; i < this.rows; i++) { for (var j = 0; j < this.columns; j++) { if (this.get(i, j) < v) { v = this.get(i, j); } } } return v; } /** * Returns the index of the minimum value * @return {Array} */ minIndex() { var v = this.get(0, 0); var idx = [0, 0]; for (var i = 0; i < this.rows; i++) { for (var j = 0; j < this.columns; j++) { if (this.get(i, j) < v) { v = this.get(i, j); idx[0] = i; idx[1] = j; } } } return idx; } /** * Returns the maximum value of one row * @param {number} row - Row index * @return {number} */ maxRow(row) { checkRowIndex(this, row); var v = this.get(row, 0); for (var i = 1; i < this.columns; i++) { if (this.get(row, i) > v) { v = this.get(row, i); } } return v; } /** * Returns the index of the maximum value of one row * @param {number} row - Row index * @return {Array} */ maxRowIndex(row) { checkRowIndex(this, row); var v = this.get(row, 0); var idx = [row, 0]; for (var i = 1; i < this.columns; i++) { if (this.get(row, i) > v) { v = this.get(row, i); idx[1] = i; } } return idx; } /** * Returns the minimum value of one row * @param {number} row - Row index * @return {number} */ minRow(row) { checkRowIndex(this, row); var v = this.get(row, 0); for (var i = 1; i < this.columns; i++) { if (this.get(row, i) < v) { v = this.get(row, i); } } return v; } /** * Returns the index of the maximum value of one row * @param {number} row - Row index * @return {Array} */ minRowIndex(row) { checkRowIndex(this, row); var v = this.get(row, 0); var idx = [row, 0]; for (var i = 1; i < this.columns; i++) { if (this.get(row, i) < v) { v = this.get(row, i); idx[1] = i; } } return idx; } /** * Returns the maximum value of one column * @param {number} column - Column index * @return {number} */ maxColumn(column) { checkColumnIndex(this, column); var v = this.get(0, column); for (var i = 1; i < this.rows; i++) { if (this.get(i, column) > v) { v = this.get(i, column); } } return v; } /** * Returns the index of the maximum value of one column * @param {number} column - Column index * @return {Array} */ maxColumnIndex(column) { checkColumnIndex(this, column); var v = this.get(0, column); var idx = [0, column]; for (var i = 1; i < this.rows; i++) { if (this.get(i, column) > v) { v = this.get(i, column); idx[0] = i; } } return idx; } /** * Returns the minimum value of one column * @param {number} column - Column index * @return {number} */ minColumn(column) { checkColumnIndex(this, column); var v = this.get(0, column); for (var i = 1; i < this.rows; i++) { if (this.get(i, column) < v) { v = this.get(i, column); } } return v; } /** * Returns the index of the minimum value of one column * @param {number} column - Column index * @return {Array} */ minColumnIndex(column) { checkColumnIndex(this, column); var v = this.get(0, column); var idx = [0, column]; for (var i = 1; i < this.rows; i++) { if (this.get(i, column) < v) { v = this.get(i, column); idx[0] = i; } } return idx; } /** * Returns an array containing the diagonal values of the matrix * @return {Array} */ diag() { var min = Math.min(this.rows, this.columns); var diag = new Array(min); for (var i = 0; i < min; i++) { diag[i] = this.get(i, i); } return diag; } /** * Returns the sum by the argument given, if no argument given, * it returns the sum of all elements of the matrix. * @param {string} by - sum by 'row' or 'column'. * @return {Matrix|number} */ sum(by) { switch (by) { case 'row': return sumByRow(this); case 'column': return sumByColumn(this); default: return sumAll(this); } } /** * Returns the mean of all elements of the matrix * @return {number} */ mean() { return this.sum() / this.size; } /** * Returns the product of all elements of the matrix * @return {number} */ prod() { var prod = 1; for (var i = 0; i < this.rows; i++) { for (var j = 0; j < this.columns; j++) { prod *= this.get(i, j); } } return prod; } /** * Returns the norm of a matrix. * @param {string} type - "frobenius" (default) or "max" return resp. the Frobenius norm and the max norm. * @return {number} */ norm(type = 'frobenius') { var result = 0; if (type === 'max') { return this.max(); } else if (type === 'frobenius') { for (var i = 0; i < this.rows; i++) { for (var j = 0; j < this.columns; j++) { result = result + this.get(i, j) * this.get(i, j); } } return Math.sqrt(result); } else { throw new RangeError(`unknown norm type: ${type}`); } } /** * Computes the cumulative sum of the matrix elements (in place, row by row) * @return {Matrix} this */ cumulativeSum() { var sum = 0; for (var i = 0; i < this.rows; i++) { for (var j = 0; j < this.columns; j++) { sum += this.get(i, j); this.set(i, j, sum); } } return this; } /** * Computes the dot (scalar) product between the matrix and another * @param {Matrix} vector2 vector * @return {number} */ dot(vector2) { if (Matrix.isMatrix(vector2)) vector2 = vector2.to1DArray(); var vector1 = this.to1DArray(); if (vector1.length !== vector2.length) { throw new RangeError('vectors do not have the same size'); } var dot = 0; for (var i = 0; i < vector1.length; i++) { dot += vector1[i] * vector2[i]; } return dot; } /** * Returns the matrix product between this and other * @param {Matrix} other * @return {Matrix} */ mmul(other) { other = this.constructor.checkMatrix(other); if (this.columns !== other.rows) { // eslint-disable-next-line no-console console.warn('Number of columns of left matrix are not equal to number of rows of right matrix.'); } var m = this.rows; var n = this.columns; var p = other.columns; var result = new this.constructor[Symbol.species](m, p); var Bcolj = new Array(n); for (var j = 0; j < p; j++) { for (var k = 0; k < n; k++) { Bcolj[k] = other.get(k, j); } for (var i = 0; i < m; i++) { var s = 0; for (k = 0; k < n; k++) { s += this.get(i, k) * Bcolj[k]; } result.set(i, j, s); } } return result; } strassen2x2(other) { var result = new this.constructor[Symbol.species](2, 2); const a11 = this.get(0, 0); const b11 = other.get(0, 0); const a12 = this.get(0, 1); const b12 = other.get(0, 1); const a21 = this.get(1, 0); const b21 = other.get(1, 0); const a22 = this.get(1, 1); const b22 = other.get(1, 1); // Compute intermediate values. const m1 = (a11 + a22) * (b11 + b22); const m2 = (a21 + a22) * b11; const m3 = a11 * (b12 - b22); const m4 = a22 * (b21 - b11); const m5 = (a11 + a12) * b22; const m6 = (a21 - a11) * (b11 + b12); const m7 = (a12 - a22) * (b21 + b22); // Combine intermediate values into the output. const c00 = m1 + m4 - m5 + m7; const c01 = m3 + m5; const c10 = m2 + m4; const c11 = m1 - m2 + m3 + m6; result.set(0, 0, c00); result.set(0, 1, c01); result.set(1, 0, c10); result.set(1, 1, c11); return result; } strassen3x3(other) { var result = new this.constructor[Symbol.species](3, 3); const a00 = this.get(0, 0); const a01 = this.get(0, 1); const a02 = this.get(0, 2); const a10 = this.get(1, 0); const a11 = this.get(1, 1); const a12 = this.get(1, 2); const a20 = this.get(2, 0); const a21 = this.get(2, 1); const a22 = this.get(2, 2); const b00 = other.get(0, 0); const b01 = other.get(0, 1); const b02 = other.get(0, 2); const b10 = other.get(1, 0); const b11 = other.get(1, 1); const b12 = other.get(1, 2); const b20 = other.get(2, 0); const b21 = other.get(2, 1); const b22 = other.get(2, 2); const m1 = (a00 + a01 + a02 - a10 - a11 - a21 - a22) * b11; const m2 = (a00 - a10) * (-b01 + b11); const m3 = a11 * (-b00 + b01 + b10 - b11 - b12 - b20 + b22); const m4 = (-a00 + a10 + a11) * (b00 - b01 + b11); const m5 = (a10 + a11) * (-b00 + b01); const m6 = a00 * b00; const m7 = (-a00 + a20 + a21) * (b00 - b02 + b12); const m8 = (-a00 + a20) * (b02 - b12); const m9 = (a20 + a21) * (-b00 + b02); const m10 = (a00 + a01 + a02 - a11 - a12 - a20 - a21) * b12; const m11 = a21 * (-b00 + b02 + b10 - b11 - b12 - b20 + b21); const m12 = (-a02 + a21 + a22) * (b11 + b20 - b21); const m13 = (a02 - a22) * (b11 - b21); const m14 = a02 * b20; const m15 = (a21 + a22) * (-b20 + b21); const m16 = (-a02 + a11 + a12) * (b12 + b20 - b22); const m17 = (a02 - a12) * (b12 - b22); const m18 = (a11 + a12) * (-b20 + b22); const m19 = a01 * b10; const m20 = a12 * b21; const m21 = a10 * b02; const m22 = a20 * b01; const m23 = a22 * b22; const c00 = m6 + m14 + m19; const c01 = m1 + m4 + m5 + m6 + m12 + m14 + m15; const c02 = m6 + m7 + m9 + m10 + m14 + m16 + m18; const c10 = m2 + m3 + m4 + m6 + m14 + m16 + m17; const c11 = m2 + m4 + m5 + m6 + m20; const c12 = m14 + m16 + m17 + m18 + m21; const c20 = m6 + m7 + m8 + m11 + m12 + m13 + m14; const c21 = m12 + m13 + m14 + m15 + m22; const c22 = m6 + m7 + m8 + m9 + m23; result.set(0, 0, c00); result.set(0, 1, c01); result.set(0, 2, c02); result.set(1, 0, c10); result.set(1, 1, c11); result.set(1, 2, c12); result.set(2, 0, c20); result.set(2, 1, c21); result.set(2, 2, c22); return result; } /** * Returns the matrix product between x and y. More efficient than mmul(other) only when we multiply squared matrix and when the size of the matrix is > 1000. * @param {Matrix} y * @return {Matrix} */ mmulStrassen(y) { var x = this.clone(); var r1 = x.rows; var c1 = x.columns; var r2 = y.rows; var c2 = y.columns; if (c1 !== r2) { // eslint-disable-next-line no-console console.warn(`Multiplying ${r1} x ${c1} and ${r2} x ${c2} matrix: dimensions do not match.`); } // Put a matrix into the top left of a matrix of zeros. // `rows` and `cols` are the dimensions of the output matrix. function embed(mat, rows, cols) { var r = mat.rows; var c = mat.columns; if ((r === rows) && (c === cols)) { return mat; } else { var resultat = Matrix.zeros(rows, cols); resultat = resultat.setSubMatrix(mat, 0, 0); return resultat; } } // Make sure both matrices are the same size. // This is exclusively for simplicity: // this algorithm can be implemented with matrices of different sizes. var r = Math.max(r1, r2); var c = Math.max(c1, c2); x = embed(x, r, c); y = embed(y, r, c); // Our recursive multiplication function. function blockMult(a, b, rows, cols) { // For small matrices, resort to naive multiplication. if (rows <= 512 || cols <= 512) { return a.mmul(b); // a is equivalent to this } // Apply dynamic padding. if ((rows % 2 === 1) && (cols % 2 === 1)) { a = embed(a, rows + 1, cols + 1); b = embed(b, rows + 1, cols + 1); } else if (rows % 2 === 1) { a = embed(a, rows + 1, cols); b = embed(b, rows + 1, cols); } else if (cols % 2 === 1) { a = embed(a, rows, cols + 1); b = embed(b, rows, cols + 1); } var halfRows = parseInt(a.rows / 2, 10); var halfCols = parseInt(a.columns / 2, 10); // Subdivide input matrices. var a11 = a.subMatrix(0, halfRows - 1, 0, halfCols - 1); var b11 = b.subMatrix(0, halfRows - 1, 0, halfCols - 1); var a12 = a.subMatrix(0, halfRows - 1, halfCols, a.columns - 1); var b12 = b.subMatrix(0, halfRows - 1, halfCols, b.columns - 1); var a21 = a.subMatrix(halfRows, a.rows - 1, 0, halfCols - 1); var b21 = b.subMatrix(halfRows, b.rows - 1, 0, halfCols - 1); var a22 = a.subMatrix(halfRows, a.rows - 1, halfCols, a.columns - 1); var b22 = b.subMatrix(halfRows, b.rows - 1, halfCols, b.columns - 1); // Compute intermediate values. var m1 = blockMult(Matrix.add(a11, a22), Matrix.add(b11, b22), halfRows, halfCols); var m2 = blockMult(Matrix.add(a21, a22), b11, halfRows, halfCols); var m3 = blockMult(a11, Matrix.sub(b12, b22), halfRows, halfCols); var m4 = blockMult(a22, Matrix.sub(b21, b11), halfRows, halfCols); var m5 = blockMult(Matrix.add(a11, a12), b22, halfRows, halfCols); var m6 = blockMult(Matrix.sub(a21, a11), Matrix.add(b11, b12), halfRows, halfCols); var m7 = blockMult(Matrix.sub(a12, a22), Matrix.add(b21, b22), halfRows, halfCols); // Combine intermediate values into the output. var c11 = Matrix.add(m1, m4); c11.sub(m5); c11.add(m7); var c12 = Matrix.add(m3, m5); var c21 = Matrix.add(m2, m4); var c22 = Matrix.sub(m1, m2); c22.add(m3); c22.add(m6); // Crop output to the desired size (undo dynamic padding). var resultat = Matrix.zeros(2 * c11.rows, 2 * c11.columns); resultat = resultat.setSubMatrix(c11, 0, 0); resultat = resultat.setSubMatrix(c12, c11.rows, 0); resultat = resultat.setSubMatrix(c21, 0, c11.columns); resultat = resultat.setSubMatrix(c22, c11.rows, c11.columns); return resultat.subMatrix(0, rows - 1, 0, cols - 1); } return blockMult(x, y, r, c); } /** * Returns a row-by-row scaled matrix * @param {number} [min=0] - Minimum scaled value * @param {number} [max=1] - Maximum scaled value * @return {Matrix} - The scaled matrix */ scaleRows(min, max) { min = min === undefined ? 0 : min; max = max === undefined ? 1 : max; if (min >= max) { throw new RangeError('min should be strictly smaller than max'); } var newMatrix = this.constructor.empty(this.rows, this.columns); for (var i = 0; i < this.rows; i++) { var scaled = ml_array_rescale_lib_es6(this.getRow(i), { min, max }); newMatrix.setRow(i, scaled); } return newMatrix; } /** * Returns a new column-by-column scaled matrix * @param {number} [min=0] - Minimum scaled value * @param {number} [max=1] - Maximum scaled value * @return {Matrix} - The new scaled matrix * @example * var matrix = new Matrix([[1,2],[-1,0]]); * var scaledMatrix = matrix.scaleColumns(); // [[1,1],[0,0]] */ scaleColumns(min, max) { min = min === undefined ? 0 : min; max = max === undefined ? 1 : max; if (min >= max) { throw new RangeError('min should be strictly smaller than max'); } var newMatrix = this.constructor.empty(this.rows, this.columns); for (var i = 0; i < this.columns; i++) { var scaled = ml_array_rescale_lib_es6(this.getColumn(i), { min: min, max: max }); newMatrix.setColumn(i, scaled); } return newMatrix; } /** * Returns the Kronecker product (also known as tensor product) between this and other * See https://en.wikipedia.org/wiki/Kronecker_product * @param {Matrix} other * @return {Matrix} */ kroneckerProduct(other) { other = this.constructor.checkMatrix(other); var m = this.rows; var n = this.columns; var p = other.rows; var q = other.columns; var result = new this.constructor[Symbol.species](m * p, n * q); for (var i = 0; i < m; i++) { for (var j = 0; j < n; j++) { for (var k = 0; k < p; k++) { for (var l = 0; l < q; l++) { result[p * i + k][q * j + l] = this.get(i, j) * other.get(k, l); } } } } return result; } /** * Transposes the matrix and returns a new one containing the result * @return {Matrix} */ transpose() { var result = new this.constructor[Symbol.species](this.columns, this.rows); for (var i = 0; i < this.rows; i++) { for (var j = 0; j < this.columns; j++) { result.set(j, i, this.get(i, j)); } } return result; } /** * Sorts the rows (in place) * @param {function} compareFunction - usual Array.prototype.sort comparison function * @return {Matrix} this */ sortRows(compareFunction) { if (compareFunction === undefined) compareFunction = compareNumbers; for (var i = 0; i < this.rows; i++) { this.setRow(i, this.getRow(i).sort(compareFunction)); } return this; } /** * Sorts the columns (in place) * @param {function} compareFunction - usual Array.prototype.sort comparison function * @return {Matrix} this */ sortColumns(compareFunction) { if (compareFunction === undefined) compareFunction = compareNumbers; for (var i = 0; i < this.columns; i++) { this.setColumn(i, this.getColumn(i).sort(compareFunction)); } return this; } /** * Returns a subset of the matrix * @param {number} startRow - First row index * @param {number} endRow - Last row index * @param {number} startColumn - First column index * @param {number} endColumn - Last column index * @return {Matrix} */ subMatrix(startRow, endRow, startColumn, endColumn) { checkRange(this, startRow, endRow, startColumn, endColumn); var newMatrix = new this.constructor[Symbol.species](endRow - startRow + 1, endColumn - startColumn + 1); for (var i = startRow; i <= endRow; i++) { for (var j = startColumn; j <= endColumn; j++) { newMatrix[i - startRow][j - startColumn] = this.get(i, j); } } return newMatrix; } /** * Returns a subset of the matrix based on an array of row indices * @param {Array} indices - Array containing the row indices * @param {number} [startColumn = 0] - First column index * @param {number} [endColumn = this.columns-1] - Last column index * @return {Matrix} */ subMatrixRow(indices, startColumn, endColumn) { if (startColumn === undefined) startColumn = 0; if (endColumn === undefined) endColumn = this.columns - 1; if ((startColumn > endColumn) || (startColumn < 0) || (startColumn >= this.columns) || (endColumn < 0) || (endColumn >= this.columns)) { throw new RangeError('Argument out of range'); } var newMatrix = new this.constructor[Symbol.species](indices.length, endColumn - startColumn + 1); for (var i = 0; i < indices.length; i++) { for (var j = startColumn; j <= endColumn; j++) { if (indices[i] < 0 || indices[i] >= this.rows) { throw new RangeError(`Row index out of range: ${indices[i]}`); } newMatrix.set(i, j - startColumn, this.get(indices[i], j)); } } return newMatrix; } /** * Returns a subset of the matrix based on an array of column indices * @param {Array} indices - Array containing the column indices * @param {number} [startRow = 0] - First row index * @param {number} [endRow = this.rows-1] - Last row index * @return {Matrix} */ subMatrixColumn(indices, startRow, endRow) { if (startRow === undefined) startRow = 0; if (endRow === undefined) endRow = this.rows - 1; if ((startRow > endRow) || (startRow < 0) || (startRow >= this.rows) || (endRow < 0) || (endRow >= this.rows)) { throw new RangeError('Argument out of range'); } var newMatrix = new this.constructor[Symbol.species](endRow - startRow + 1, indices.length); for (var i = 0; i < indices.length; i++) { for (var j = startRow; j <= endRow; j++) { if (indices[i] < 0 || indices[i] >= this.columns) { throw new RangeError(`Column index out of range: ${indices[i]}`); } newMatrix.set(j - startRow, i, this.get(j, indices[i])); } } return newMatrix; } /** * Set a part of the matrix to the given sub-matrix * @param {Matrix|Array< Array >} matrix - The source matrix from which to extract values. * @param {number} startRow - The index of the first row to set * @param {number} startColumn - The index of the first column to set * @return {Matrix} */ setSubMatrix(matrix, startRow, startColumn) { matrix = this.constructor.checkMatrix(matrix); var endRow = startRow + matrix.rows - 1; var endColumn = startColumn + matrix.columns - 1; checkRange(this, startRow, endRow, startColumn, endColumn); for (var i = 0; i < matrix.rows; i++) { for (var j = 0; j < matrix.columns; j++) { this[startRow + i][startColumn + j] = matrix.get(i, j); } } return this; } /** * Return a new matrix based on a selection of rows and columns * @param {Array} rowIndices - The row indices to select. Order matters and an index can be more than once. * @param {Array} columnIndices - The column indices to select. Order matters and an index can be use more than once. * @return {Matrix} The new matrix */ selection(rowIndices, columnIndices) { var indices = checkIndices(this, rowIndices, columnIndices); var newMatrix = new this.constructor[Symbol.species](rowIndices.length, columnIndices.length); for (var i = 0; i < indices.row.length; i++) { var rowIndex = indices.row[i]; for (var j = 0; j < indices.column.length; j++) { var columnIndex = indices.column[j]; newMatrix[i][j] = this.get(rowIndex, columnIndex); } } return newMatrix; } /** * Returns the trace of the matrix (sum of the diagonal elements) * @return {number} */ trace() { var min = Math.min(this.rows, this.columns); var trace = 0; for (var i = 0; i < min; i++) { trace += this.get(i, i); } return trace; } /* Matrix views */ /** * Returns a view of the transposition of the matrix * @return {MatrixTransposeView} */ transposeView() { return new transpose_MatrixTransposeView(this); } /** * Returns a view of the row vector with the given index * @param {number} row - row index of the vector * @return {MatrixRowView} */ rowView(row) { checkRowIndex(this, row); return new row_MatrixRowView(this, row); } /** * Returns a view of the column vector with the given index * @param {number} column - column index of the vector * @return {MatrixColumnView} */ columnView(column) { checkColumnIndex(this, column); return new column_MatrixColumnView(this, column); } /** * Returns a view of the matrix flipped in the row axis * @return {MatrixFlipRowView} */ flipRowView() { return new flipRow_MatrixFlipRowView(this); } /** * Returns a view of the matrix flipped in the column axis * @return {MatrixFlipColumnView} */ flipColumnView() { return new flipColumn_MatrixFlipColumnView(this); } /** * Returns a view of a submatrix giving the index boundaries * @param {number} startRow - first row index of the submatrix * @param {number} endRow - last row index of the submatrix * @param {number} startColumn - first column index of the submatrix * @param {number} endColumn - last column index of the submatrix * @return {MatrixSubView} */ subMatrixView(startRow, endRow, startColumn, endColumn) { return new sub_MatrixSubView(this, startRow, endRow, startColumn, endColumn); } /** * Returns a view of the cross of the row indices and the column indices * @example * // resulting vector is [[2], [2]] * var matrix = new Matrix([[1,2,3], [4,5,6]]).selectionView([0, 0], [1]) * @param {Array} rowIndices * @param {Array} columnIndices * @return {MatrixSelectionView} */ selectionView(rowIndices, columnIndices) { return new selection_MatrixSelectionView(this, rowIndices, columnIndices); } /** * Returns a view of the row indices * @example * // resulting vector is [[1,2,3], [1,2,3]] * var matrix = new Matrix([[1,2,3], [4,5,6]]).rowSelectionView([0, 0]) * @param {Array} rowIndices * @return {MatrixRowSelectionView} */ rowSelectionView(rowIndices) { return new rowSelection_MatrixRowSelectionView(this, rowIndices); } /** * Returns a view of the column indices * @example * // resulting vector is [[2, 2], [5, 5]] * var matrix = new Matrix([[1,2,3], [4,5,6]]).columnSelectionView([1, 1]) * @param {Array} columnIndices * @return {MatrixColumnSelectionView} */ columnSelectionView(columnIndices) { return new columnSelection_MatrixColumnSelectionView(this, columnIndices); } /** * Calculates and returns the determinant of a matrix as a Number * @example * new Matrix([[1,2,3], [4,5,6]]).det() * @return {number} */ det() { if (this.isSquare()) { var a, b, c, d; if (this.columns === 2) { // 2 x 2 matrix a = this.get(0, 0); b = this.get(0, 1); c = this.get(1, 0); d = this.get(1, 1); return a * d - (b * c); } else if (this.columns === 3) { // 3 x 3 matrix var subMatrix0, subMatrix1, subMatrix2; subMatrix0 = this.selectionView([1, 2], [1, 2]); subMatrix1 = this.selectionView([1, 2], [0, 2]); subMatrix2 = this.selectionView([1, 2], [0, 1]); a = this.get(0, 0); b = this.get(0, 1); c = this.get(0, 2); return a * subMatrix0.det() - b * subMatrix1.det() + c * subMatrix2.det(); } else { // general purpose determinant using the LU decomposition return new lu_LuDecomposition(this).determinant; } } else { throw Error('Determinant can only be calculated for a square matrix.'); } } /** * Returns inverse of a matrix if it exists or the pseudoinverse * @param {number} threshold - threshold for taking inverse of singular values (default = 1e-15) * @return {Matrix} the (pseudo)inverted matrix. */ pseudoInverse(threshold) { if (threshold === undefined) threshold = Number.EPSILON; var svdSolution = new svd_SingularValueDecomposition(this, { autoTranspose: true }); var U = svdSolution.leftSingularVectors; var V = svdSolution.rightSingularVectors; var s = svdSolution.diagonal; for (var i = 0; i < s.length; i++) { if (Math.abs(s[i]) > threshold) { s[i] = 1.0 / s[i]; } else { s[i] = 0.0; } } // convert list to diagonal s = this.constructor[Symbol.species].diag(s); return V.mmul(s.mmul(U.transposeView())); } /** * Creates an exact and independent copy of the matrix * @return {Matrix} */ clone() { var newMatrix = new this.constructor[Symbol.species](this.rows, this.columns); for (var row = 0; row < this.rows; row++) { for (var column = 0; column < this.columns; column++) { newMatrix.set(row, column, this.get(row, column)); } } return newMatrix; } } Matrix.prototype.klass = 'Matrix'; function compareNumbers(a, b) { return a - b; } /* Synonyms */ Matrix.random = Matrix.rand; Matrix.diagonal = Matrix.diag; Matrix.prototype.diagonal = Matrix.prototype.diag; Matrix.identity = Matrix.eye; Matrix.prototype.negate = Matrix.prototype.neg; Matrix.prototype.tensorProduct = Matrix.prototype.kroneckerProduct; Matrix.prototype.determinant = Matrix.prototype.det; /* Add dynamically instance and static methods for mathematical operations */ var inplaceOperator = ` (function %name%(value) { if (typeof value === 'number') return this.%name%S(value); return this.%name%M(value); }) `; var inplaceOperatorScalar = ` (function %name%S(value) { for (var i = 0; i < this.rows; i++) { for (var j = 0; j < this.columns; j++) { this.set(i, j, this.get(i, j) %op% value); } } return this; }) `; var inplaceOperatorMatrix = ` (function %name%M(matrix) { matrix = this.constructor.checkMatrix(matrix); if (this.rows !== matrix.rows || this.columns !== matrix.columns) { throw new RangeError('Matrices dimensions must be equal'); } for (var i = 0; i < this.rows; i++) { for (var j = 0; j < this.columns; j++) { this.set(i, j, this.get(i, j) %op% matrix.get(i, j)); } } return this; }) `; var staticOperator = ` (function %name%(matrix, value) { var newMatrix = new this[Symbol.species](matrix); return newMatrix.%name%(value); }) `; var inplaceMethod = ` (function %name%() { for (var i = 0; i < this.rows; i++) { for (var j = 0; j < this.columns; j++) { this.set(i, j, %method%(this.get(i, j))); } } return this; }) `; var staticMethod = ` (function %name%(matrix) { var newMatrix = new this[Symbol.species](matrix); return newMatrix.%name%(); }) `; var inplaceMethodWithArgs = ` (function %name%(%args%) { for (var i = 0; i < this.rows; i++) { for (var j = 0; j < this.columns; j++) { this.set(i, j, %method%(this.get(i, j), %args%)); } } return this; }) `; var staticMethodWithArgs = ` (function %name%(matrix, %args%) { var newMatrix = new this[Symbol.species](matrix); return newMatrix.%name%(%args%); }) `; var inplaceMethodWithOneArgScalar = ` (function %name%S(value) { for (var i = 0; i < this.rows; i++) { for (var j = 0; j < this.columns; j++) { this.set(i, j, %method%(this.get(i, j), value)); } } return this; }) `; var inplaceMethodWithOneArgMatrix = ` (function %name%M(matrix) { matrix = this.constructor.checkMatrix(matrix); if (this.rows !== matrix.rows || this.columns !== matrix.columns) { throw new RangeError('Matrices dimensions must be equal'); } for (var i = 0; i < this.rows; i++) { for (var j = 0; j < this.columns; j++) { this.set(i, j, %method%(this.get(i, j), matrix.get(i, j))); } } return this; }) `; var inplaceMethodWithOneArg = ` (function %name%(value) { if (typeof value === 'number') return this.%name%S(value); return this.%name%M(value); }) `; var staticMethodWithOneArg = staticMethodWithArgs; var operators = [ // Arithmetic operators ['+', 'add'], ['-', 'sub', 'subtract'], ['*', 'mul', 'multiply'], ['/', 'div', 'divide'], ['%', 'mod', 'modulus'], // Bitwise operators ['&', 'and'], ['|', 'or'], ['^', 'xor'], ['<<', 'leftShift'], ['>>', 'signPropagatingRightShift'], ['>>>', 'rightShift', 'zeroFillRightShift'] ]; var i; var eval2 = eval; // eslint-disable-line no-eval for (var operator of operators) { var inplaceOp = eval2(fillTemplateFunction(inplaceOperator, { name: operator[1], op: operator[0] })); var inplaceOpS = eval2(fillTemplateFunction(inplaceOperatorScalar, { name: `${operator[1]}S`, op: operator[0] })); var inplaceOpM = eval2(fillTemplateFunction(inplaceOperatorMatrix, { name: `${operator[1]}M`, op: operator[0] })); var staticOp = eval2(fillTemplateFunction(staticOperator, { name: operator[1] })); for (i = 1; i < operator.length; i++) { Matrix.prototype[operator[i]] = inplaceOp; Matrix.prototype[`${operator[i]}S`] = inplaceOpS; Matrix.prototype[`${operator[i]}M`] = inplaceOpM; Matrix[operator[i]] = staticOp; } } var methods = [['~', 'not']]; [ 'abs', 'acos', 'acosh', 'asin', 'asinh', 'atan', 'atanh', 'cbrt', 'ceil', 'clz32', 'cos', 'cosh', 'exp', 'expm1', 'floor', 'fround', 'log', 'log1p', 'log10', 'log2', 'round', 'sign', 'sin', 'sinh', 'sqrt', 'tan', 'tanh', 'trunc' ].forEach(function (mathMethod) { methods.push([`Math.${mathMethod}`, mathMethod]); }); for (var method of methods) { var inplaceMeth = eval2(fillTemplateFunction(inplaceMethod, { name: method[1], method: method[0] })); var staticMeth = eval2(fillTemplateFunction(staticMethod, { name: method[1] })); for (i = 1; i < method.length; i++) { Matrix.prototype[method[i]] = inplaceMeth; Matrix[method[i]] = staticMeth; } } var methodsWithArgs = [['Math.pow', 1, 'pow']]; for (var methodWithArg of methodsWithArgs) { var args = 'arg0'; for (i = 1; i < methodWithArg[1]; i++) { args += `, arg${i}`; } if (methodWithArg[1] !== 1) { var inplaceMethWithArgs = eval2(fillTemplateFunction(inplaceMethodWithArgs, { name: methodWithArg[2], method: methodWithArg[0], args: args })); var staticMethWithArgs = eval2(fillTemplateFunction(staticMethodWithArgs, { name: methodWithArg[2], args: args })); for (i = 2; i < methodWithArg.length; i++) { Matrix.prototype[methodWithArg[i]] = inplaceMethWithArgs; Matrix[methodWithArg[i]] = staticMethWithArgs; } } else { var tmplVar = { name: methodWithArg[2], args: args, method: methodWithArg[0] }; var inplaceMethod2 = eval2(fillTemplateFunction(inplaceMethodWithOneArg, tmplVar)); var inplaceMethodS = eval2(fillTemplateFunction(inplaceMethodWithOneArgScalar, tmplVar)); var inplaceMethodM = eval2(fillTemplateFunction(inplaceMethodWithOneArgMatrix, tmplVar)); var staticMethod2 = eval2(fillTemplateFunction(staticMethodWithOneArg, tmplVar)); for (i = 2; i < methodWithArg.length; i++) { Matrix.prototype[methodWithArg[i]] = inplaceMethod2; Matrix.prototype[`${methodWithArg[i]}M`] = inplaceMethodM; Matrix.prototype[`${methodWithArg[i]}S`] = inplaceMethodS; Matrix[methodWithArg[i]] = staticMethod2; } } } function fillTemplateFunction(template, values) { for (var value in values) { template = template.replace(new RegExp(`%${value}%`, 'g'), values[value]); } return template; } return Matrix; } // CONCATENATED MODULE: ./node_modules/ml-matrix/src/matrix.js class matrix_Matrix extends AbstractMatrix(Array) { constructor(nRows, nColumns) { var i; if (arguments.length === 1 && typeof nRows === 'number') { return new Array(nRows); } if (matrix_Matrix.isMatrix(nRows)) { return nRows.clone(); } else if (Number.isInteger(nRows) && nRows > 0) { // Create an empty matrix super(nRows); if (Number.isInteger(nColumns) && nColumns > 0) { for (i = 0; i < nRows; i++) { this[i] = new Array(nColumns); } } else { throw new TypeError('nColumns must be a positive integer'); } } else if (Array.isArray(nRows)) { // Copy the values from the 2D array const matrix = nRows; nRows = matrix.length; nColumns = matrix[0].length; if (typeof nColumns !== 'number' || nColumns === 0) { throw new TypeError( 'Data must be a 2D array with at least one element' ); } super(nRows); for (i = 0; i < nRows; i++) { if (matrix[i].length !== nColumns) { throw new RangeError('Inconsistent array dimensions'); } this[i] = [].concat(matrix[i]); } } else { throw new TypeError( 'First argument must be a positive number or an array' ); } this.rows = nRows; this.columns = nColumns; return this; } set(rowIndex, columnIndex, value) { this[rowIndex][columnIndex] = value; return this; } get(rowIndex, columnIndex) { return this[rowIndex][columnIndex]; } /** * Removes a row from the given index * @param {number} index - Row index * @return {Matrix} this */ removeRow(index) { checkRowIndex(this, index); if (this.rows === 1) { throw new RangeError('A matrix cannot have less than one row'); } this.splice(index, 1); this.rows -= 1; return this; } /** * Adds a row at the given index * @param {number} [index = this.rows] - Row index * @param {Array|Matrix} array - Array or vector * @return {Matrix} this */ addRow(index, array) { if (array === undefined) { array = index; index = this.rows; } checkRowIndex(this, index, true); array = checkRowVector(this, array, true); this.splice(index, 0, array); this.rows += 1; return this; } /** * Removes a column from the given index * @param {number} index - Column index * @return {Matrix} this */ removeColumn(index) { checkColumnIndex(this, index); if (this.columns === 1) { throw new RangeError('A matrix cannot have less than one column'); } for (var i = 0; i < this.rows; i++) { this[i].splice(index, 1); } this.columns -= 1; return this; } /** * Adds a column at the given index * @param {number} [index = this.columns] - Column index * @param {Array|Matrix} array - Array or vector * @return {Matrix} this */ addColumn(index, array) { if (typeof array === 'undefined') { array = index; index = this.columns; } checkColumnIndex(this, index, true); array = checkColumnVector(this, array); for (var i = 0; i < this.rows; i++) { this[i].splice(index, 0, array[i]); } this.columns += 1; return this; } } // CONCATENATED MODULE: ./node_modules/ml-matrix/src/wrap/WrapperMatrix1D.js class WrapperMatrix1D_WrapperMatrix1D extends AbstractMatrix() { /** * @class WrapperMatrix1D * @param {Array} data * @param {object} [options] * @param {object} [options.rows = 1] */ constructor(data, options = {}) { const { rows = 1 } = options; if (data.length % rows !== 0) { throw new Error('the data length is not divisible by the number of rows'); } super(); this.rows = rows; this.columns = data.length / rows; this.data = data; } set(rowIndex, columnIndex, value) { var index = this._calculateIndex(rowIndex, columnIndex); this.data[index] = value; return this; } get(rowIndex, columnIndex) { var index = this._calculateIndex(rowIndex, columnIndex); return this.data[index]; } _calculateIndex(row, column) { return row * this.columns + column; } static get [Symbol.species]() { return matrix_Matrix; } } // CONCATENATED MODULE: ./node_modules/ml-matrix/src/wrap/WrapperMatrix2D.js class WrapperMatrix2D_WrapperMatrix2D extends AbstractMatrix() { /** * @class WrapperMatrix2D * @param {Array>} data */ constructor(data) { super(); this.data = data; this.rows = data.length; this.columns = data[0].length; } set(rowIndex, columnIndex, value) { this.data[rowIndex][columnIndex] = value; return this; } get(rowIndex, columnIndex) { return this.data[rowIndex][columnIndex]; } static get [Symbol.species]() { return matrix_Matrix; } } // CONCATENATED MODULE: ./node_modules/ml-matrix/src/wrap/wrap.js /** * @param {Array>|Array} array * @param {object} [options] * @param {object} [options.rows = 1] * @return {WrapperMatrix1D|WrapperMatrix2D} */ function wrap(array, options) { if (Array.isArray(array)) { if (array[0] && Array.isArray(array[0])) { return new WrapperMatrix2D_WrapperMatrix2D(array); } else { return new WrapperMatrix1D_WrapperMatrix1D(array, options); } } else { throw new Error('the argument is not an array'); } } // CONCATENATED MODULE: ./node_modules/ml-matrix/src/dc/qr.js /** * @class QrDecomposition * @link https://github.com/lutzroeder/Mapack/blob/master/Source/QrDecomposition.cs * @param {Matrix} value */ class qr_QrDecomposition { constructor(value) { value = WrapperMatrix2D_WrapperMatrix2D.checkMatrix(value); var qr = value.clone(); var m = value.rows; var n = value.columns; var rdiag = new Array(n); var i, j, k, s; for (k = 0; k < n; k++) { var nrm = 0; for (i = k; i < m; i++) { nrm = hypotenuse(nrm, qr.get(i, k)); } if (nrm !== 0) { if (qr.get(k, k) < 0) { nrm = -nrm; } for (i = k; i < m; i++) { qr.set(i, k, qr.get(i, k) / nrm); } qr.set(k, k, qr.get(k, k) + 1); for (j = k + 1; j < n; j++) { s = 0; for (i = k; i < m; i++) { s += qr.get(i, k) * qr.get(i, j); } s = -s / qr.get(k, k); for (i = k; i < m; i++) { qr.set(i, j, qr.get(i, j) + s * qr.get(i, k)); } } } rdiag[k] = -nrm; } this.QR = qr; this.Rdiag = rdiag; } /** * Solve a problem of least square (Ax=b) by using the QR decomposition. Useful when A is rectangular, but not working when A is singular. * Example : We search to approximate x, with A matrix shape m*n, x vector size n, b vector size m (m > n). We will use : * var qr = QrDecomposition(A); * var x = qr.solve(b); * @param {Matrix} value - Matrix 1D which is the vector b (in the equation Ax = b) * @return {Matrix} - The vector x */ solve(value) { value = matrix_Matrix.checkMatrix(value); var qr = this.QR; var m = qr.rows; if (value.rows !== m) { throw new Error('Matrix row dimensions must agree'); } if (!this.isFullRank()) { throw new Error('Matrix is rank deficient'); } var count = value.columns; var X = value.clone(); var n = qr.columns; var i, j, k, s; for (k = 0; k < n; k++) { for (j = 0; j < count; j++) { s = 0; for (i = k; i < m; i++) { s += qr[i][k] * X[i][j]; } s = -s / qr[k][k]; for (i = k; i < m; i++) { X[i][j] += s * qr[i][k]; } } } for (k = n - 1; k >= 0; k--) { for (j = 0; j < count; j++) { X[k][j] /= this.Rdiag[k]; } for (i = 0; i < k; i++) { for (j = 0; j < count; j++) { X[i][j] -= X[k][j] * qr[i][k]; } } } return X.subMatrix(0, n - 1, 0, count - 1); } /** * * @return {boolean} */ isFullRank() { var columns = this.QR.columns; for (var i = 0; i < columns; i++) { if (this.Rdiag[i] === 0) { return false; } } return true; } /** * * @return {Matrix} */ get upperTriangularMatrix() { var qr = this.QR; var n = qr.columns; var X = new matrix_Matrix(n, n); var i, j; for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { if (i < j) { X[i][j] = qr[i][j]; } else if (i === j) { X[i][j] = this.Rdiag[i]; } else { X[i][j] = 0; } } } return X; } /** * * @return {Matrix} */ get orthogonalMatrix() { var qr = this.QR; var rows = qr.rows; var columns = qr.columns; var X = new matrix_Matrix(rows, columns); var i, j, k, s; for (k = columns - 1; k >= 0; k--) { for (i = 0; i < rows; i++) { X[i][k] = 0; } X[k][k] = 1; for (j = k; j < columns; j++) { if (qr[k][k] !== 0) { s = 0; for (i = k; i < rows; i++) { s += qr[i][k] * X[i][j]; } s = -s / qr[k][k]; for (i = k; i < rows; i++) { X[i][j] += s * qr[i][k]; } } } } return X; } } // CONCATENATED MODULE: ./node_modules/ml-matrix/src/decompositions.js /** * Computes the inverse of a Matrix * @param {Matrix} matrix * @param {boolean} [useSVD=false] * @return {Matrix} */ function inverse(matrix, useSVD = false) { matrix = WrapperMatrix2D_WrapperMatrix2D.checkMatrix(matrix); if (useSVD) { return new svd_SingularValueDecomposition(matrix).inverse(); } else { return solve(matrix, matrix_Matrix.eye(matrix.rows)); } } /** * * @param {Matrix} leftHandSide * @param {Matrix} rightHandSide * @param {boolean} [useSVD = false] * @return {Matrix} */ function solve(leftHandSide, rightHandSide, useSVD = false) { leftHandSide = WrapperMatrix2D_WrapperMatrix2D.checkMatrix(leftHandSide); rightHandSide = WrapperMatrix2D_WrapperMatrix2D.checkMatrix(rightHandSide); if (useSVD) { return new svd_SingularValueDecomposition(leftHandSide).solve(rightHandSide); } else { return leftHandSide.isSquare() ? new lu_LuDecomposition(leftHandSide).solve(rightHandSide) : new qr_QrDecomposition(leftHandSide).solve(rightHandSide); } } // CONCATENATED MODULE: ./node_modules/ml-matrix/src/linearDependencies.js // function used by rowsDependencies function xrange(n, exception) { var range = []; for (var i = 0; i < n; i++) { if (i !== exception) { range.push(i); } } return range; } // function used by rowsDependencies function dependenciesOneRow( error, matrix, index, thresholdValue = 10e-10, thresholdError = 10e-10 ) { if (error > thresholdError) { return new Array(matrix.rows + 1).fill(0); } else { var returnArray = matrix.addRow(index, [0]); for (var i = 0; i < returnArray.rows; i++) { if (Math.abs(returnArray.get(i, 0)) < thresholdValue) { returnArray.set(i, 0, 0); } } return returnArray.to1DArray(); } } /** * Creates a matrix which represents the dependencies between rows. * If a row is a linear combination of others rows, the result will be a row with the coefficients of this combination. * For example : for A = [[2, 0, 0, 1], [0, 1, 6, 0], [0, 3, 0, 1], [0, 0, 1, 0], [0, 1, 2, 0]], the result will be [[0, 0, 0, 0, 0], [0, 0, 0, 4, 1], [0, 0, 0, 0, 0], [0, 0.25, 0, 0, -0.25], [0, 1, 0, -4, 0]] * @param {Matrix} matrix * @param {Object} [options] includes thresholdValue and thresholdError. * @param {number} [options.thresholdValue = 10e-10] If an absolute value is inferior to this threshold, it will equals zero. * @param {number} [options.thresholdError = 10e-10] If the error is inferior to that threshold, the linear combination found is accepted and the row is dependent from other rows. * @return {Matrix} the matrix which represents the dependencies between rows. */ function linearDependencies(matrix, options = {}) { const { thresholdValue = 10e-10, thresholdError = 10e-10 } = options; var n = matrix.rows; var results = new matrix_Matrix(n, n); for (var i = 0; i < n; i++) { var b = matrix_Matrix.columnVector(matrix.getRow(i)); var Abis = matrix.subMatrixRow(xrange(n, i)).transposeView(); var svd = new svd_SingularValueDecomposition(Abis); var x = svd.solve(b); var error = lib_es6( matrix_Matrix.sub(b, Abis.mmul(x)) .abs() .to1DArray() ); results.setRow( i, dependenciesOneRow(error, x, i, thresholdValue, thresholdError) ); } return results; } // CONCATENATED MODULE: ./node_modules/ml-matrix/src/dc/evd.js /** * @class EigenvalueDecomposition * @link https://github.com/lutzroeder/Mapack/blob/master/Source/EigenvalueDecomposition.cs * @param {Matrix} matrix * @param {object} [options] * @param {boolean} [options.assumeSymmetric=false] */ class evd_EigenvalueDecomposition { constructor(matrix, options = {}) { const { assumeSymmetric = false } = options; matrix = WrapperMatrix2D_WrapperMatrix2D.checkMatrix(matrix); if (!matrix.isSquare()) { throw new Error('Matrix is not a square matrix'); } var n = matrix.columns; var V = getFilled2DArray(n, n, 0); var d = new Array(n); var e = new Array(n); var value = matrix; var i, j; var isSymmetric = false; if (assumeSymmetric) { isSymmetric = true; } else { isSymmetric = matrix.isSymmetric(); } if (isSymmetric) { for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { V[i][j] = value.get(i, j); } } tred2(n, e, d, V); tql2(n, e, d, V); } else { var H = getFilled2DArray(n, n, 0); var ort = new Array(n); for (j = 0; j < n; j++) { for (i = 0; i < n; i++) { H[i][j] = value.get(i, j); } } orthes(n, H, ort, V); hqr2(n, e, d, V, H); } this.n = n; this.e = e; this.d = d; this.V = V; } /** * * @return {Array} */ get realEigenvalues() { return this.d; } /** * * @return {Array} */ get imaginaryEigenvalues() { return this.e; } /** * * @return {Matrix} */ get eigenvectorMatrix() { if (!matrix_Matrix.isMatrix(this.V)) { this.V = new matrix_Matrix(this.V); } return this.V; } /** * * @return {Matrix} */ get diagonalMatrix() { var n = this.n; var e = this.e; var d = this.d; var X = new matrix_Matrix(n, n); var i, j; for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { X[i][j] = 0; } X[i][i] = d[i]; if (e[i] > 0) { X[i][i + 1] = e[i]; } else if (e[i] < 0) { X[i][i - 1] = e[i]; } } return X; } } function tred2(n, e, d, V) { var f, g, h, i, j, k, hh, scale; for (j = 0; j < n; j++) { d[j] = V[n - 1][j]; } for (i = n - 1; i > 0; i--) { scale = 0; h = 0; for (k = 0; k < i; k++) { scale = scale + Math.abs(d[k]); } if (scale === 0) { e[i] = d[i - 1]; for (j = 0; j < i; j++) { d[j] = V[i - 1][j]; V[i][j] = 0; V[j][i] = 0; } } else { for (k = 0; k < i; k++) { d[k] /= scale; h += d[k] * d[k]; } f = d[i - 1]; g = Math.sqrt(h); if (f > 0) { g = -g; } e[i] = scale * g; h = h - f * g; d[i - 1] = f - g; for (j = 0; j < i; j++) { e[j] = 0; } for (j = 0; j < i; j++) { f = d[j]; V[j][i] = f; g = e[j] + V[j][j] * f; for (k = j + 1; k <= i - 1; k++) { g += V[k][j] * d[k]; e[k] += V[k][j] * f; } e[j] = g; } f = 0; for (j = 0; j < i; j++) { e[j] /= h; f += e[j] * d[j]; } hh = f / (h + h); for (j = 0; j < i; j++) { e[j] -= hh * d[j]; } for (j = 0; j < i; j++) { f = d[j]; g = e[j]; for (k = j; k <= i - 1; k++) { V[k][j] -= f * e[k] + g * d[k]; } d[j] = V[i - 1][j]; V[i][j] = 0; } } d[i] = h; } for (i = 0; i < n - 1; i++) { V[n - 1][i] = V[i][i]; V[i][i] = 1; h = d[i + 1]; if (h !== 0) { for (k = 0; k <= i; k++) { d[k] = V[k][i + 1] / h; } for (j = 0; j <= i; j++) { g = 0; for (k = 0; k <= i; k++) { g += V[k][i + 1] * V[k][j]; } for (k = 0; k <= i; k++) { V[k][j] -= g * d[k]; } } } for (k = 0; k <= i; k++) { V[k][i + 1] = 0; } } for (j = 0; j < n; j++) { d[j] = V[n - 1][j]; V[n - 1][j] = 0; } V[n - 1][n - 1] = 1; e[0] = 0; } function tql2(n, e, d, V) { var g, h, i, j, k, l, m, p, r, dl1, c, c2, c3, el1, s, s2, iter; for (i = 1; i < n; i++) { e[i - 1] = e[i]; } e[n - 1] = 0; var f = 0; var tst1 = 0; var eps = Number.EPSILON; for (l = 0; l < n; l++) { tst1 = Math.max(tst1, Math.abs(d[l]) + Math.abs(e[l])); m = l; while (m < n) { if (Math.abs(e[m]) <= eps * tst1) { break; } m++; } if (m > l) { iter = 0; do { iter = iter + 1; g = d[l]; p = (d[l + 1] - g) / (2 * e[l]); r = hypotenuse(p, 1); if (p < 0) { r = -r; } d[l] = e[l] / (p + r); d[l + 1] = e[l] * (p + r); dl1 = d[l + 1]; h = g - d[l]; for (i = l + 2; i < n; i++) { d[i] -= h; } f = f + h; p = d[m]; c = 1; c2 = c; c3 = c; el1 = e[l + 1]; s = 0; s2 = 0; for (i = m - 1; i >= l; i--) { c3 = c2; c2 = c; s2 = s; g = c * e[i]; h = c * p; r = hypotenuse(p, e[i]); e[i + 1] = s * r; s = e[i] / r; c = p / r; p = c * d[i] - s * g; d[i + 1] = h + s * (c * g + s * d[i]); for (k = 0; k < n; k++) { h = V[k][i + 1]; V[k][i + 1] = s * V[k][i] + c * h; V[k][i] = c * V[k][i] - s * h; } } p = -s * s2 * c3 * el1 * e[l] / dl1; e[l] = s * p; d[l] = c * p; } while (Math.abs(e[l]) > eps * tst1); } d[l] = d[l] + f; e[l] = 0; } for (i = 0; i < n - 1; i++) { k = i; p = d[i]; for (j = i + 1; j < n; j++) { if (d[j] < p) { k = j; p = d[j]; } } if (k !== i) { d[k] = d[i]; d[i] = p; for (j = 0; j < n; j++) { p = V[j][i]; V[j][i] = V[j][k]; V[j][k] = p; } } } } function orthes(n, H, ort, V) { var low = 0; var high = n - 1; var f, g, h, i, j, m; var scale; for (m = low + 1; m <= high - 1; m++) { scale = 0; for (i = m; i <= high; i++) { scale = scale + Math.abs(H[i][m - 1]); } if (scale !== 0) { h = 0; for (i = high; i >= m; i--) { ort[i] = H[i][m - 1] / scale; h += ort[i] * ort[i]; } g = Math.sqrt(h); if (ort[m] > 0) { g = -g; } h = h - ort[m] * g; ort[m] = ort[m] - g; for (j = m; j < n; j++) { f = 0; for (i = high; i >= m; i--) { f += ort[i] * H[i][j]; } f = f / h; for (i = m; i <= high; i++) { H[i][j] -= f * ort[i]; } } for (i = 0; i <= high; i++) { f = 0; for (j = high; j >= m; j--) { f += ort[j] * H[i][j]; } f = f / h; for (j = m; j <= high; j++) { H[i][j] -= f * ort[j]; } } ort[m] = scale * ort[m]; H[m][m - 1] = scale * g; } } for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { V[i][j] = i === j ? 1 : 0; } } for (m = high - 1; m >= low + 1; m--) { if (H[m][m - 1] !== 0) { for (i = m + 1; i <= high; i++) { ort[i] = H[i][m - 1]; } for (j = m; j <= high; j++) { g = 0; for (i = m; i <= high; i++) { g += ort[i] * V[i][j]; } g = g / ort[m] / H[m][m - 1]; for (i = m; i <= high; i++) { V[i][j] += g * ort[i]; } } } } } function hqr2(nn, e, d, V, H) { var n = nn - 1; var low = 0; var high = nn - 1; var eps = Number.EPSILON; var exshift = 0; var norm = 0; var p = 0; var q = 0; var r = 0; var s = 0; var z = 0; var iter = 0; var i, j, k, l, m, t, w, x, y; var ra, sa, vr, vi; var notlast, cdivres; for (i = 0; i < nn; i++) { if (i < low || i > high) { d[i] = H[i][i]; e[i] = 0; } for (j = Math.max(i - 1, 0); j < nn; j++) { norm = norm + Math.abs(H[i][j]); } } while (n >= low) { l = n; while (l > low) { s = Math.abs(H[l - 1][l - 1]) + Math.abs(H[l][l]); if (s === 0) { s = norm; } if (Math.abs(H[l][l - 1]) < eps * s) { break; } l--; } if (l === n) { H[n][n] = H[n][n] + exshift; d[n] = H[n][n]; e[n] = 0; n--; iter = 0; } else if (l === n - 1) { w = H[n][n - 1] * H[n - 1][n]; p = (H[n - 1][n - 1] - H[n][n]) / 2; q = p * p + w; z = Math.sqrt(Math.abs(q)); H[n][n] = H[n][n] + exshift; H[n - 1][n - 1] = H[n - 1][n - 1] + exshift; x = H[n][n]; if (q >= 0) { z = p >= 0 ? p + z : p - z; d[n - 1] = x + z; d[n] = d[n - 1]; if (z !== 0) { d[n] = x - w / z; } e[n - 1] = 0; e[n] = 0; x = H[n][n - 1]; s = Math.abs(x) + Math.abs(z); p = x / s; q = z / s; r = Math.sqrt(p * p + q * q); p = p / r; q = q / r; for (j = n - 1; j < nn; j++) { z = H[n - 1][j]; H[n - 1][j] = q * z + p * H[n][j]; H[n][j] = q * H[n][j] - p * z; } for (i = 0; i <= n; i++) { z = H[i][n - 1]; H[i][n - 1] = q * z + p * H[i][n]; H[i][n] = q * H[i][n] - p * z; } for (i = low; i <= high; i++) { z = V[i][n - 1]; V[i][n - 1] = q * z + p * V[i][n]; V[i][n] = q * V[i][n] - p * z; } } else { d[n - 1] = x + p; d[n] = x + p; e[n - 1] = z; e[n] = -z; } n = n - 2; iter = 0; } else { x = H[n][n]; y = 0; w = 0; if (l < n) { y = H[n - 1][n - 1]; w = H[n][n - 1] * H[n - 1][n]; } if (iter === 10) { exshift += x; for (i = low; i <= n; i++) { H[i][i] -= x; } s = Math.abs(H[n][n - 1]) + Math.abs(H[n - 1][n - 2]); x = y = 0.75 * s; w = -0.4375 * s * s; } if (iter === 30) { s = (y - x) / 2; s = s * s + w; if (s > 0) { s = Math.sqrt(s); if (y < x) { s = -s; } s = x - w / ((y - x) / 2 + s); for (i = low; i <= n; i++) { H[i][i] -= s; } exshift += s; x = y = w = 0.964; } } iter = iter + 1; m = n - 2; while (m >= l) { z = H[m][m]; r = x - z; s = y - z; p = (r * s - w) / H[m + 1][m] + H[m][m + 1]; q = H[m + 1][m + 1] - z - r - s; r = H[m + 2][m + 1]; s = Math.abs(p) + Math.abs(q) + Math.abs(r); p = p / s; q = q / s; r = r / s; if (m === l) { break; } if ( Math.abs(H[m][m - 1]) * (Math.abs(q) + Math.abs(r)) < eps * (Math.abs(p) * (Math.abs(H[m - 1][m - 1]) + Math.abs(z) + Math.abs(H[m + 1][m + 1]))) ) { break; } m--; } for (i = m + 2; i <= n; i++) { H[i][i - 2] = 0; if (i > m + 2) { H[i][i - 3] = 0; } } for (k = m; k <= n - 1; k++) { notlast = k !== n - 1; if (k !== m) { p = H[k][k - 1]; q = H[k + 1][k - 1]; r = notlast ? H[k + 2][k - 1] : 0; x = Math.abs(p) + Math.abs(q) + Math.abs(r); if (x !== 0) { p = p / x; q = q / x; r = r / x; } } if (x === 0) { break; } s = Math.sqrt(p * p + q * q + r * r); if (p < 0) { s = -s; } if (s !== 0) { if (k !== m) { H[k][k - 1] = -s * x; } else if (l !== m) { H[k][k - 1] = -H[k][k - 1]; } p = p + s; x = p / s; y = q / s; z = r / s; q = q / p; r = r / p; for (j = k; j < nn; j++) { p = H[k][j] + q * H[k + 1][j]; if (notlast) { p = p + r * H[k + 2][j]; H[k + 2][j] = H[k + 2][j] - p * z; } H[k][j] = H[k][j] - p * x; H[k + 1][j] = H[k + 1][j] - p * y; } for (i = 0; i <= Math.min(n, k + 3); i++) { p = x * H[i][k] + y * H[i][k + 1]; if (notlast) { p = p + z * H[i][k + 2]; H[i][k + 2] = H[i][k + 2] - p * r; } H[i][k] = H[i][k] - p; H[i][k + 1] = H[i][k + 1] - p * q; } for (i = low; i <= high; i++) { p = x * V[i][k] + y * V[i][k + 1]; if (notlast) { p = p + z * V[i][k + 2]; V[i][k + 2] = V[i][k + 2] - p * r; } V[i][k] = V[i][k] - p; V[i][k + 1] = V[i][k + 1] - p * q; } } } } } if (norm === 0) { return; } for (n = nn - 1; n >= 0; n--) { p = d[n]; q = e[n]; if (q === 0) { l = n; H[n][n] = 1; for (i = n - 1; i >= 0; i--) { w = H[i][i] - p; r = 0; for (j = l; j <= n; j++) { r = r + H[i][j] * H[j][n]; } if (e[i] < 0) { z = w; s = r; } else { l = i; if (e[i] === 0) { H[i][n] = w !== 0 ? -r / w : -r / (eps * norm); } else { x = H[i][i + 1]; y = H[i + 1][i]; q = (d[i] - p) * (d[i] - p) + e[i] * e[i]; t = (x * s - z * r) / q; H[i][n] = t; H[i + 1][n] = Math.abs(x) > Math.abs(z) ? (-r - w * t) / x : (-s - y * t) / z; } t = Math.abs(H[i][n]); if (eps * t * t > 1) { for (j = i; j <= n; j++) { H[j][n] = H[j][n] / t; } } } } } else if (q < 0) { l = n - 1; if (Math.abs(H[n][n - 1]) > Math.abs(H[n - 1][n])) { H[n - 1][n - 1] = q / H[n][n - 1]; H[n - 1][n] = -(H[n][n] - p) / H[n][n - 1]; } else { cdivres = cdiv(0, -H[n - 1][n], H[n - 1][n - 1] - p, q); H[n - 1][n - 1] = cdivres[0]; H[n - 1][n] = cdivres[1]; } H[n][n - 1] = 0; H[n][n] = 1; for (i = n - 2; i >= 0; i--) { ra = 0; sa = 0; for (j = l; j <= n; j++) { ra = ra + H[i][j] * H[j][n - 1]; sa = sa + H[i][j] * H[j][n]; } w = H[i][i] - p; if (e[i] < 0) { z = w; r = ra; s = sa; } else { l = i; if (e[i] === 0) { cdivres = cdiv(-ra, -sa, w, q); H[i][n - 1] = cdivres[0]; H[i][n] = cdivres[1]; } else { x = H[i][i + 1]; y = H[i + 1][i]; vr = (d[i] - p) * (d[i] - p) + e[i] * e[i] - q * q; vi = (d[i] - p) * 2 * q; if (vr === 0 && vi === 0) { vr = eps * norm * (Math.abs(w) + Math.abs(q) + Math.abs(x) + Math.abs(y) + Math.abs(z)); } cdivres = cdiv( x * r - z * ra + q * sa, x * s - z * sa - q * ra, vr, vi ); H[i][n - 1] = cdivres[0]; H[i][n] = cdivres[1]; if (Math.abs(x) > Math.abs(z) + Math.abs(q)) { H[i + 1][n - 1] = (-ra - w * H[i][n - 1] + q * H[i][n]) / x; H[i + 1][n] = (-sa - w * H[i][n] - q * H[i][n - 1]) / x; } else { cdivres = cdiv(-r - y * H[i][n - 1], -s - y * H[i][n], z, q); H[i + 1][n - 1] = cdivres[0]; H[i + 1][n] = cdivres[1]; } } t = Math.max(Math.abs(H[i][n - 1]), Math.abs(H[i][n])); if (eps * t * t > 1) { for (j = i; j <= n; j++) { H[j][n - 1] = H[j][n - 1] / t; H[j][n] = H[j][n] / t; } } } } } } for (i = 0; i < nn; i++) { if (i < low || i > high) { for (j = i; j < nn; j++) { V[i][j] = H[i][j]; } } } for (j = nn - 1; j >= low; j--) { for (i = low; i <= high; i++) { z = 0; for (k = low; k <= Math.min(j, high); k++) { z = z + V[i][k] * H[k][j]; } V[i][j] = z; } } } function cdiv(xr, xi, yr, yi) { var r, d; if (Math.abs(yr) > Math.abs(yi)) { r = yi / yr; d = yr + r * yi; return [(xr + r * xi) / d, (xi - r * xr) / d]; } else { r = yr / yi; d = yi + r * yr; return [(r * xr + xi) / d, (r * xi - xr) / d]; } } // CONCATENATED MODULE: ./node_modules/ml-matrix/src/dc/cholesky.js /** * @class CholeskyDecomposition * @link https://github.com/lutzroeder/Mapack/blob/master/Source/CholeskyDecomposition.cs * @param {Matrix} value */ class cholesky_CholeskyDecomposition { constructor(value) { value = WrapperMatrix2D_WrapperMatrix2D.checkMatrix(value); if (!value.isSymmetric()) { throw new Error('Matrix is not symmetric'); } var a = value; var dimension = a.rows; var l = new matrix_Matrix(dimension, dimension); var positiveDefinite = true; var i, j, k; for (j = 0; j < dimension; j++) { var Lrowj = l[j]; var d = 0; for (k = 0; k < j; k++) { var Lrowk = l[k]; var s = 0; for (i = 0; i < k; i++) { s += Lrowk[i] * Lrowj[i]; } Lrowj[k] = s = (a.get(j, k) - s) / l[k][k]; d = d + s * s; } d = a.get(j, j) - d; positiveDefinite &= d > 0; l[j][j] = Math.sqrt(Math.max(d, 0)); for (k = j + 1; k < dimension; k++) { l[j][k] = 0; } } if (!positiveDefinite) { throw new Error('Matrix is not positive definite'); } this.L = l; } /** * * @param {Matrix} value * @return {Matrix} */ solve(value) { value = WrapperMatrix2D_WrapperMatrix2D.checkMatrix(value); var l = this.L; var dimension = l.rows; if (value.rows !== dimension) { throw new Error('Matrix dimensions do not match'); } var count = value.columns; var B = value.clone(); var i, j, k; for (k = 0; k < dimension; k++) { for (j = 0; j < count; j++) { for (i = 0; i < k; i++) { B[k][j] -= B[i][j] * l[k][i]; } B[k][j] /= l[k][k]; } } for (k = dimension - 1; k >= 0; k--) { for (j = 0; j < count; j++) { for (i = k + 1; i < dimension; i++) { B[k][j] -= B[i][j] * l[i][k]; } B[k][j] /= l[k][k]; } } return B; } /** * * @return {Matrix} */ get lowerTriangularMatrix() { return this.L; } } // CONCATENATED MODULE: ./node_modules/ml-matrix/src/index.js /* concated harmony reexport default */__webpack_require__.d(__webpack_exports__, "default", function() { return matrix_Matrix; }); /* concated harmony reexport Matrix */__webpack_require__.d(__webpack_exports__, "Matrix", function() { return matrix_Matrix; }); /* concated harmony reexport abstractMatrix */__webpack_require__.d(__webpack_exports__, "abstractMatrix", function() { return AbstractMatrix; }); /* concated harmony reexport wrap */__webpack_require__.d(__webpack_exports__, "wrap", function() { return wrap; }); /* concated harmony reexport WrapperMatrix2D */__webpack_require__.d(__webpack_exports__, "WrapperMatrix2D", function() { return WrapperMatrix2D_WrapperMatrix2D; }); /* concated harmony reexport WrapperMatrix1D */__webpack_require__.d(__webpack_exports__, "WrapperMatrix1D", function() { return WrapperMatrix1D_WrapperMatrix1D; }); /* concated harmony reexport solve */__webpack_require__.d(__webpack_exports__, "solve", function() { return solve; }); /* concated harmony reexport inverse */__webpack_require__.d(__webpack_exports__, "inverse", function() { return inverse; }); /* concated harmony reexport linearDependencies */__webpack_require__.d(__webpack_exports__, "linearDependencies", function() { return linearDependencies; }); /* concated harmony reexport SingularValueDecomposition */__webpack_require__.d(__webpack_exports__, "SingularValueDecomposition", function() { return svd_SingularValueDecomposition; }); /* concated harmony reexport SVD */__webpack_require__.d(__webpack_exports__, "SVD", function() { return svd_SingularValueDecomposition; }); /* concated harmony reexport EigenvalueDecomposition */__webpack_require__.d(__webpack_exports__, "EigenvalueDecomposition", function() { return evd_EigenvalueDecomposition; }); /* concated harmony reexport EVD */__webpack_require__.d(__webpack_exports__, "EVD", function() { return evd_EigenvalueDecomposition; }); /* concated harmony reexport CholeskyDecomposition */__webpack_require__.d(__webpack_exports__, "CholeskyDecomposition", function() { return cholesky_CholeskyDecomposition; }); /* concated harmony reexport CHO */__webpack_require__.d(__webpack_exports__, "CHO", function() { return cholesky_CholeskyDecomposition; }); /* concated harmony reexport LuDecomposition */__webpack_require__.d(__webpack_exports__, "LuDecomposition", function() { return lu_LuDecomposition; }); /* concated harmony reexport LU */__webpack_require__.d(__webpack_exports__, "LU", function() { return lu_LuDecomposition; }); /* concated harmony reexport QrDecomposition */__webpack_require__.d(__webpack_exports__, "QrDecomposition", function() { return qr_QrDecomposition; }); /* concated harmony reexport QR */__webpack_require__.d(__webpack_exports__, "QR", function() { return qr_QrDecomposition; }); /***/ }) /******/ ]); });