import cv2 import PIL import requests import numpy as np from lama_cleaner.model.lama import LaMa from lama_cleaner.schema import Config def download_image(url): image = PIL.Image.open(requests.get(url, stream=True).raw) image = PIL.ImageOps.exif_transpose(image) image = image.convert("RGB") return image img_url = "https://raw.githubusercontent.com/Sanster/lama-cleaner/main/assets/dog.jpg" mask_url = "https://user-images.githubusercontent.com/3998421/202105351-9fcc4bf8-129d-461a-8524-92e4caad431f.png" image = np.asarray(download_image(img_url)) mask = np.asarray(download_image(mask_url).convert("L")) # set to GPU for faster inference model = LaMa("cpu") result = model(image, mask, Config(hd_strategy="Original", ldm_steps=20, hd_strategy_crop_margin=128, hd_strategy_crop_trigger_size=800, hd_strategy_resize_limit=800)) cv2.imwrite("lama_inpaint_demo.jpg", result)