from PIL import Image from deepfloyd_if.modules import IFStageI, IFStageII from deepfloyd_if.modules.t5 import T5Embedder from deepfloyd_if.pipelines import style_transfer # Run locally device = 'cuda' cache_dir = "/path/to/storage/IF" if_I = IFStageI('IF-I-XL-v1.0', device=device, cache_dir=cache_dir) if_II = IFStageII('IF-II-L-v1.0', device=device, cache_dir=cache_dir) t5 = T5Embedder(device=device, cache_dir=cache_dir) # Style generate from GPT-4 style_prompt = [ "in style of colorful and cute kawaii art", "in style of boho-chic textile patterns", ] raw_pil_image = Image.open("/path/to/image") result = style_transfer( t5=t5, if_I=if_I, if_II=if_II, support_pil_img=raw_pil_image, style_prompt=style_prompt, seed=42, if_I_kwargs={ "guidance_scale": 10.0, "sample_timestep_respacing": "10,10,10,10,10,10,10,10,0,0", 'support_noise_less_qsample_steps': 5, }, if_II_kwargs={ "guidance_scale": 4.0, "sample_timestep_respacing": 'smart50', "support_noise_less_qsample_steps": 5, }, ) # save all the images generated in StageII for i, image in enumerate(result["II"]): image.save("./style_transfer_{}.jpg".format(i))