merve HF Staff commited on
Commit
8cfc2c7
·
verified ·
1 Parent(s): c04f7a5

initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ deers.mp4 filter=lfs diff=lfs merge=lfs -text
37
+ foot.mp4 filter=lfs diff=lfs merge=lfs -text
38
+ penguins.mp4 filter=lfs diff=lfs merge=lfs -text
39
+ transformers-5.0.0.dev0-py3-none-any.whl filter=lfs diff=lfs merge=lfs -text
app.py ADDED
@@ -0,0 +1,971 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ os.system("pip install --upgrade ./transformers-5.0.0.dev0-py3-none-any.whl")
4
+ import colorsys
5
+ import gc
6
+ import os
7
+ from typing import Optional
8
+
9
+ import cv2
10
+ import gradio as gr
11
+ import numpy as np
12
+ import torch
13
+ from gradio.themes import Soft
14
+ from PIL import Image, ImageDraw, ImageFont
15
+ from transformers import Sam3TrackerVideoModel, Sam3TrackerVideoProcessor, Sam3VideoModel, Sam3VideoProcessor
16
+
17
+ def get_device_and_dtype() -> tuple[str, torch.dtype]:
18
+ device = "cuda" if torch.cuda.is_available() else "cpu"
19
+ dtype = torch.bfloat16
20
+ return device, dtype
21
+
22
+
23
+ _GLOBAL_DEVICE, _GLOBAL_DTYPE = get_device_and_dtype()
24
+ _GLOBAL_MODEL_REPO_ID = "facebook/sam3"
25
+ _GLOBAL_TOKEN = os.getenv("HF_TOKEN")
26
+
27
+ _GLOBAL_TRACKER_MODEL = Sam3TrackerVideoModel.from_pretrained(
28
+ _GLOBAL_MODEL_REPO_ID, torch_dtype=_GLOBAL_DTYPE, device_map=_GLOBAL_DEVICE
29
+ ).eval()
30
+ _GLOBAL_TRACKER_PROCESSOR = Sam3TrackerVideoProcessor.from_pretrained(_GLOBAL_MODEL_REPO_ID, token=_GLOBAL_TOKEN)
31
+
32
+ _GLOBAL_TEXT_VIDEO_MODEL = Sam3VideoModel.from_pretrained(_GLOBAL_MODEL_REPO_ID, token=_GLOBAL_TOKEN)
33
+ _GLOBAL_TEXT_VIDEO_MODEL = _GLOBAL_TEXT_VIDEO_MODEL.to(_GLOBAL_DEVICE, dtype=_GLOBAL_DTYPE).eval()
34
+ _GLOBAL_TEXT_VIDEO_PROCESSOR = Sam3VideoProcessor.from_pretrained(_GLOBAL_MODEL_REPO_ID, token=_GLOBAL_TOKEN)
35
+ print("Models loaded successfully!")
36
+
37
+
38
+ def try_load_video_frames(video_path_or_url: str) -> tuple[list[Image.Image], dict]:
39
+ cap = cv2.VideoCapture(video_path_or_url)
40
+ frames = []
41
+ while cap.isOpened():
42
+ ret, frame = cap.read()
43
+ if not ret:
44
+ break
45
+ frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
46
+ frames.append(Image.fromarray(frame_rgb))
47
+ fps_val = cap.get(cv2.CAP_PROP_FPS)
48
+ cap.release()
49
+ info = {
50
+ "num_frames": len(frames),
51
+ "fps": float(fps_val) if fps_val and fps_val > 0 else None,
52
+ }
53
+ return frames, info
54
+
55
+
56
+ def overlay_masks_on_frame(
57
+ frame: Image.Image,
58
+ masks_per_object: dict[int, np.ndarray],
59
+ color_by_obj: dict[int, tuple[int, int, int]],
60
+ alpha: float = 0.5,
61
+ ) -> Image.Image:
62
+ base = np.array(frame).astype(np.float32) / 255.0
63
+ height, width = base.shape[:2]
64
+ overlay = base.copy()
65
+
66
+ for obj_id, mask in masks_per_object.items():
67
+ if mask is None:
68
+ continue
69
+ if mask.dtype != np.float32:
70
+ mask = mask.astype(np.float32)
71
+ if mask.ndim == 3:
72
+ mask = mask.squeeze()
73
+ mask = np.clip(mask, 0.0, 1.0)
74
+ color = np.array(color_by_obj.get(obj_id, (255, 0, 0)), dtype=np.float32) / 255.0
75
+ a = alpha
76
+ m = mask[..., None]
77
+ overlay = (1.0 - a * m) * overlay + (a * m) * color
78
+
79
+ out = np.clip(overlay * 255.0, 0, 255).astype(np.uint8)
80
+ return Image.fromarray(out)
81
+
82
+
83
+ def pastel_color_for_object(obj_id: int) -> tuple[int, int, int]:
84
+ golden_ratio_conjugate = 0.61
85
+ hue = (obj_id * golden_ratio_conjugate) % 1.0
86
+ saturation = 0.45
87
+ value = 1.0
88
+ r_f, g_f, b_f = colorsys.hsv_to_rgb(hue, saturation, value)
89
+ return int(r_f * 255), int(g_f * 255), int(b_f * 255)
90
+
91
+
92
+ class AppState:
93
+ def __init__(self):
94
+ self.reset()
95
+
96
+ def reset(self):
97
+ self.video_frames: list[Image.Image] = []
98
+ self.inference_session = None
99
+ self.video_fps: float | None = None
100
+ self.masks_by_frame: dict[int, dict[int, np.ndarray]] = {}
101
+ self.color_by_obj: dict[int, tuple[int, int, int]] = {}
102
+ self.clicks_by_frame_obj: dict[int, dict[int, list[tuple[int, int, int]]]] = {}
103
+ self.boxes_by_frame_obj: dict[int, dict[int, list[tuple[int, int, int, int]]]] = {}
104
+ self.text_prompts_by_frame_obj: dict[int, dict[int, str]] = {}
105
+ self.composited_frames: dict[int, Image.Image] = {}
106
+ self.current_frame_idx: int = 0
107
+ self.current_obj_id: int = 1
108
+ self.current_label: str = "positive"
109
+ self.current_clear_old: bool = True
110
+ self.current_prompt_type: str = "Points"
111
+ self.pending_box_start: tuple[int, int] | None = None
112
+ self.pending_box_start_frame_idx: int | None = None
113
+ self.pending_box_start_obj_id: int | None = None
114
+ self.active_tab: str = "point_box"
115
+
116
+ def __repr__(self):
117
+ return f"AppState(video_frames={len(self.video_frames)}, video_fps={self.video_fps}, masks_by_frame={len(self.masks_by_frame)}, color_by_obj={len(self.color_by_obj)})"
118
+
119
+ @property
120
+ def num_frames(self) -> int:
121
+ return len(self.video_frames)
122
+
123
+
124
+
125
+
126
+ def init_video_session(
127
+ GLOBAL_STATE: gr.State, video: str | dict, active_tab: str = "point_box"
128
+ ) -> tuple[AppState, int, int, Image.Image, str]:
129
+ GLOBAL_STATE.video_frames = []
130
+ GLOBAL_STATE.masks_by_frame = {}
131
+ GLOBAL_STATE.color_by_obj = {}
132
+ GLOBAL_STATE.text_prompts_by_frame_obj = {}
133
+ GLOBAL_STATE.clicks_by_frame_obj = {}
134
+ GLOBAL_STATE.boxes_by_frame_obj = {}
135
+ GLOBAL_STATE.composited_frames = {}
136
+ GLOBAL_STATE.inference_session = None
137
+ GLOBAL_STATE.active_tab = active_tab
138
+
139
+ device = _GLOBAL_DEVICE
140
+ dtype = _GLOBAL_DTYPE
141
+
142
+ video_path: Optional[str] = None
143
+ if isinstance(video, dict):
144
+ video_path = video.get("name") or video.get("path") or video.get("data")
145
+ elif isinstance(video, str):
146
+ video_path = video
147
+ else:
148
+ video_path = None
149
+
150
+ if not video_path:
151
+ raise gr.Error("Invalid video input.")
152
+
153
+ frames, info = try_load_video_frames(video_path)
154
+ if len(frames) == 0:
155
+ raise gr.Error("No frames could be loaded from the video.")
156
+
157
+ MAX_SECONDS = 8.0
158
+ trimmed_note = ""
159
+ fps_in = info.get("fps")
160
+ max_frames_allowed = int(MAX_SECONDS * fps_in) if fps_in else len(frames)
161
+ if len(frames) > max_frames_allowed:
162
+ frames = frames[:max_frames_allowed]
163
+ trimmed_note = f" (trimmed to {int(MAX_SECONDS)}s = {len(frames)} frames)"
164
+ if isinstance(info, dict):
165
+ info["num_frames"] = len(frames)
166
+ GLOBAL_STATE.video_frames = frames
167
+ GLOBAL_STATE.video_fps = float(fps_in) if fps_in else None
168
+
169
+ raw_video = [np.array(frame) for frame in frames]
170
+
171
+ if active_tab == "text":
172
+ processor = _GLOBAL_TEXT_VIDEO_PROCESSOR
173
+ GLOBAL_STATE.inference_session = processor.init_video_session(
174
+ video=frames,
175
+ inference_device=device,
176
+ processing_device="cpu",
177
+ video_storage_device="cpu",
178
+ dtype=dtype,
179
+ )
180
+ else:
181
+ processor = _GLOBAL_TRACKER_PROCESSOR
182
+ GLOBAL_STATE.inference_session = processor.init_video_session(
183
+ video=raw_video,
184
+ inference_device=device,
185
+ video_storage_device=device,
186
+ processing_device=device,
187
+ inference_state_device=device,
188
+ dtype=dtype,
189
+ max_vision_features_cache_size=1,
190
+ )
191
+
192
+ first_frame = frames[0]
193
+ max_idx = len(frames) - 1
194
+ if active_tab == "text":
195
+ status = (
196
+ f"Loaded {len(frames)} frames @ {GLOBAL_STATE.video_fps or 'unknown'} fps{trimmed_note}. "
197
+ f"Device: {device}, dtype: bfloat16. Ready for text prompting."
198
+ )
199
+ else:
200
+ status = (
201
+ f"Loaded {len(frames)} frames @ {GLOBAL_STATE.video_fps or 'unknown'} fps{trimmed_note}. "
202
+ f"Device: {device}, dtype: bfloat16. Video session initialized."
203
+ )
204
+ return GLOBAL_STATE, 0, max_idx, first_frame, status
205
+
206
+
207
+ def compose_frame(state: AppState, frame_idx: int) -> Image.Image:
208
+ if state is None or state.video_frames is None or len(state.video_frames) == 0:
209
+ return None
210
+ frame_idx = int(np.clip(frame_idx, 0, len(state.video_frames) - 1))
211
+ frame = state.video_frames[frame_idx]
212
+ masks = state.masks_by_frame.get(frame_idx, {})
213
+ out_img = frame
214
+ if len(masks) != 0:
215
+ out_img = overlay_masks_on_frame(out_img, masks, state.color_by_obj, alpha=0.65)
216
+
217
+ clicks_map = state.clicks_by_frame_obj.get(frame_idx)
218
+ if clicks_map:
219
+ draw = ImageDraw.Draw(out_img)
220
+ cross_half = 6
221
+ for obj_id, pts in clicks_map.items():
222
+ for x, y, lbl in pts:
223
+ color = (0, 255, 0) if int(lbl) == 1 else (255, 0, 0)
224
+ draw.line([(x - cross_half, y), (x + cross_half, y)], fill=color, width=2)
225
+ draw.line([(x, y - cross_half), (x, y + cross_half)], fill=color, width=2)
226
+ if (
227
+ state.pending_box_start is not None
228
+ and state.pending_box_start_frame_idx == frame_idx
229
+ and state.pending_box_start_obj_id is not None
230
+ ):
231
+ draw = ImageDraw.Draw(out_img)
232
+ x, y = state.pending_box_start
233
+ cross_half = 6
234
+ color = state.color_by_obj.get(state.pending_box_start_obj_id, (255, 255, 255))
235
+ draw.line([(x - cross_half, y), (x + cross_half, y)], fill=color, width=2)
236
+ draw.line([(x, y - cross_half), (x, y + cross_half)], fill=color, width=2)
237
+ box_map = state.boxes_by_frame_obj.get(frame_idx)
238
+ if box_map:
239
+ draw = ImageDraw.Draw(out_img)
240
+ for obj_id, boxes in box_map.items():
241
+ color = state.color_by_obj.get(obj_id, (255, 255, 255))
242
+ for x1, y1, x2, y2 in boxes:
243
+ draw.rectangle([(x1, y1), (x2, y2)], outline=color, width=2)
244
+
245
+ text_prompts_by_obj = {}
246
+ for frame_texts in state.text_prompts_by_frame_obj.values():
247
+ for obj_id, text_prompt in frame_texts.items():
248
+ if obj_id not in text_prompts_by_obj:
249
+ text_prompts_by_obj[obj_id] = text_prompt
250
+
251
+ if text_prompts_by_obj and len(masks) > 0:
252
+ draw = ImageDraw.Draw(out_img)
253
+ font = ImageFont.load_default()
254
+
255
+ for obj_id, text_prompt in text_prompts_by_obj.items():
256
+ obj_mask = masks.get(obj_id)
257
+ if obj_mask is not None:
258
+ mask_array = np.array(obj_mask)
259
+ if mask_array.size > 0 and np.any(mask_array):
260
+ rows = np.any(mask_array, axis=1)
261
+ cols = np.any(mask_array, axis=0)
262
+ if np.any(rows) and np.any(cols):
263
+ y_min, y_max = np.where(rows)[0][[0, -1]]
264
+ x_min, x_max = np.where(cols)[0][[0, -1]]
265
+ label_x = int(x_min)
266
+ label_y = int(y_min) - 20
267
+ label_y = max(5, label_y)
268
+
269
+ obj_color = state.color_by_obj.get(obj_id, (255, 255, 255))
270
+
271
+ # Include object ID in the label
272
+ label_text = f"{text_prompt} (ID: {obj_id})"
273
+ bbox = draw.textbbox((label_x, label_y), label_text, font=font)
274
+ padding = 4
275
+ draw.rectangle(
276
+ [(bbox[0] - padding, bbox[1] - padding), (bbox[2] + padding, bbox[3] + padding)],
277
+ fill=obj_color,
278
+ outline=None,
279
+ width=0,
280
+ )
281
+ draw.text((label_x, label_y), label_text, fill=(255, 255, 255), font=font)
282
+
283
+ state.composited_frames[frame_idx] = out_img
284
+ return out_img
285
+
286
+
287
+ def update_frame_display(state: AppState, frame_idx: int) -> Image.Image:
288
+ if state is None or state.video_frames is None or len(state.video_frames) == 0:
289
+ return None
290
+ frame_idx = int(np.clip(frame_idx, 0, len(state.video_frames) - 1))
291
+ cached = state.composited_frames.get(frame_idx)
292
+ if cached is not None:
293
+ return cached
294
+ return compose_frame(state, frame_idx)
295
+
296
+
297
+ def _ensure_color_for_obj(state: AppState, obj_id: int):
298
+ if obj_id not in state.color_by_obj:
299
+ state.color_by_obj[obj_id] = pastel_color_for_object(obj_id)
300
+
301
+
302
+ def on_image_click(
303
+ img: Image.Image | np.ndarray,
304
+ state: AppState,
305
+ frame_idx: int,
306
+ obj_id: int,
307
+ label: str,
308
+ clear_old: bool,
309
+ evt: gr.SelectData,
310
+ ) -> Image.Image:
311
+ if state is None or state.inference_session is None:
312
+ return img
313
+
314
+ model = _GLOBAL_TRACKER_MODEL
315
+ processor = _GLOBAL_TRACKER_PROCESSOR
316
+
317
+ x = y = None
318
+ if evt is not None:
319
+ try:
320
+ if hasattr(evt, "index") and isinstance(evt.index, (list, tuple)) and len(evt.index) == 2:
321
+ x, y = int(evt.index[0]), int(evt.index[1])
322
+ elif hasattr(evt, "value") and isinstance(evt.value, dict) and "x" in evt.value and "y" in evt.value:
323
+ x, y = int(evt.value["x"]), int(evt.value["y"])
324
+ except Exception:
325
+ x = y = None
326
+
327
+ if x is None or y is None:
328
+ raise gr.Error("Could not read click coordinates.")
329
+
330
+ _ensure_color_for_obj(state, int(obj_id))
331
+ ann_frame_idx = int(frame_idx)
332
+ ann_obj_id = int(obj_id)
333
+
334
+ if state.current_prompt_type == "Boxes":
335
+ if state.pending_box_start is None:
336
+ frame_clicks = state.clicks_by_frame_obj.setdefault(ann_frame_idx, {})
337
+ frame_clicks[ann_obj_id] = []
338
+ state.composited_frames.pop(ann_frame_idx, None)
339
+ state.pending_box_start = (int(x), int(y))
340
+ state.pending_box_start_frame_idx = ann_frame_idx
341
+ state.pending_box_start_obj_id = ann_obj_id
342
+ state.composited_frames.pop(ann_frame_idx, None)
343
+ return update_frame_display(state, ann_frame_idx)
344
+ else:
345
+ x1, y1 = state.pending_box_start
346
+ x2, y2 = int(x), int(y)
347
+ state.pending_box_start = None
348
+ state.pending_box_start_frame_idx = None
349
+ state.pending_box_start_obj_id = None
350
+ state.composited_frames.pop(ann_frame_idx, None)
351
+ x_min, y_min = min(x1, x2), min(y1, y2)
352
+ x_max, y_max = max(x1, x2), max(y1, y2)
353
+
354
+ box = [[[x_min, y_min, x_max, y_max]]]
355
+ processor.add_inputs_to_inference_session(
356
+ inference_session=state.inference_session,
357
+ frame_idx=ann_frame_idx,
358
+ obj_ids=ann_obj_id,
359
+ input_boxes=box,
360
+ )
361
+
362
+ frame_boxes = state.boxes_by_frame_obj.setdefault(ann_frame_idx, {})
363
+ obj_boxes = frame_boxes.setdefault(ann_obj_id, [])
364
+ obj_boxes.clear()
365
+ obj_boxes.append((x_min, y_min, x_max, y_max))
366
+ state.composited_frames.pop(ann_frame_idx, None)
367
+ else:
368
+ label_int = 1 if str(label).lower().startswith("pos") else 0
369
+
370
+ frame_clicks = state.clicks_by_frame_obj.setdefault(ann_frame_idx, {})
371
+ obj_clicks = frame_clicks.setdefault(ann_obj_id, [])
372
+
373
+ if bool(clear_old):
374
+ obj_clicks.clear()
375
+ frame_boxes = state.boxes_by_frame_obj.setdefault(ann_frame_idx, {})
376
+ frame_boxes[ann_obj_id] = []
377
+ if hasattr(state.inference_session, "reset_inference_session"):
378
+ pass
379
+
380
+ obj_clicks.append((int(x), int(y), int(label_int)))
381
+
382
+ points = [[[[click[0], click[1]] for click in obj_clicks]]]
383
+ labels = [[[click[2] for click in obj_clicks]]]
384
+
385
+ processor.add_inputs_to_inference_session(
386
+ inference_session=state.inference_session,
387
+ frame_idx=ann_frame_idx,
388
+ obj_ids=ann_obj_id,
389
+ input_points=points,
390
+ input_labels=labels,
391
+ )
392
+ state.composited_frames.pop(ann_frame_idx, None)
393
+
394
+ with torch.no_grad():
395
+ outputs = model(
396
+ inference_session=state.inference_session,
397
+ frame_idx=ann_frame_idx,
398
+ )
399
+
400
+ out_mask_logits = processor.post_process_masks(
401
+ [outputs.pred_masks],
402
+ [[state.inference_session.video_height, state.inference_session.video_width]],
403
+ binarize=False,
404
+ )[0]
405
+
406
+ mask_2d = (out_mask_logits[0] > 0.0).cpu().numpy()
407
+ masks_for_frame = state.masks_by_frame.setdefault(ann_frame_idx, {})
408
+ masks_for_frame[ann_obj_id] = mask_2d
409
+
410
+ state.composited_frames.pop(ann_frame_idx, None)
411
+
412
+ return update_frame_display(state, ann_frame_idx)
413
+
414
+
415
+ def on_text_prompt(
416
+ state: AppState,
417
+ frame_idx: int,
418
+ text_prompt: str,
419
+ ) -> tuple[Image.Image, str]:
420
+ if state is None or state.inference_session is None:
421
+ return None, "Upload a video and enter text prompt."
422
+
423
+ model = _GLOBAL_TEXT_VIDEO_MODEL
424
+ processor = _GLOBAL_TEXT_VIDEO_PROCESSOR
425
+
426
+ if not text_prompt or not text_prompt.strip():
427
+ return update_frame_display(state, int(frame_idx)), "Please enter a text prompt."
428
+
429
+ frame_idx = int(np.clip(frame_idx, 0, len(state.video_frames) - 1))
430
+
431
+ state.inference_session = processor.add_text_prompt(
432
+ inference_session=state.inference_session,
433
+ text=text_prompt.strip(),
434
+ )
435
+
436
+ masks_for_frame = state.masks_by_frame.setdefault(frame_idx, {})
437
+ frame_texts = state.text_prompts_by_frame_obj.setdefault(int(frame_idx), {})
438
+
439
+ num_objects = 0
440
+ detected_obj_ids = []
441
+ with torch.no_grad():
442
+ for model_outputs in model.propagate_in_video_iterator(
443
+ inference_session=state.inference_session,
444
+ start_frame_idx=frame_idx,
445
+ max_frame_num_to_track=1,
446
+ ):
447
+ processed_outputs = processor.postprocess_outputs(
448
+ state.inference_session,
449
+ model_outputs,
450
+ )
451
+
452
+ current_frame_idx = model_outputs.frame_idx
453
+ if current_frame_idx == frame_idx:
454
+ object_ids = processed_outputs["object_ids"]
455
+ masks = processed_outputs["masks"]
456
+ scores = processed_outputs["scores"]
457
+
458
+ num_objects = len(object_ids)
459
+ if num_objects > 0:
460
+ if len(scores) > 0:
461
+ sorted_indices = torch.argsort(scores, descending=True).cpu().tolist()
462
+ else:
463
+ sorted_indices = list(range(num_objects))
464
+
465
+ for mask_idx in sorted_indices:
466
+ current_obj_id = int(object_ids[mask_idx].item())
467
+ detected_obj_ids.append(current_obj_id)
468
+ _ensure_color_for_obj(state, current_obj_id)
469
+ mask_2d = masks[mask_idx].float().cpu().numpy()
470
+ if mask_2d.ndim == 3:
471
+ mask_2d = mask_2d.squeeze()
472
+ mask_2d = (mask_2d > 0.0).astype(np.float32)
473
+ masks_for_frame[current_obj_id] = mask_2d
474
+ frame_texts[current_obj_id] = text_prompt.strip()
475
+
476
+ state.composited_frames.pop(frame_idx, None)
477
+
478
+ if detected_obj_ids:
479
+ obj_ids_str = ", ".join(map(str, detected_obj_ids))
480
+ status = f"Processed text prompt '{text_prompt.strip()}' on frame {frame_idx}. Found {num_objects} object(s) with IDs: {obj_ids_str}."
481
+ else:
482
+ status = f"Processed text prompt '{text_prompt.strip()}' on frame {frame_idx}. No objects detected."
483
+ return update_frame_display(state, int(frame_idx)), status
484
+
485
+
486
+ def propagate_masks(GLOBAL_STATE: gr.State):
487
+ if GLOBAL_STATE is None:
488
+ return GLOBAL_STATE, "Load a video first.", gr.update()
489
+
490
+ if GLOBAL_STATE.active_tab != "text" and GLOBAL_STATE.inference_session is None:
491
+ return GLOBAL_STATE, "Load a video first.", gr.update()
492
+
493
+ total = max(1, GLOBAL_STATE.num_frames)
494
+ processed = 0
495
+
496
+ yield GLOBAL_STATE, f"Propagating masks: {processed}/{total}", gr.update()
497
+
498
+ last_frame_idx = 0
499
+
500
+ with torch.no_grad():
501
+ if GLOBAL_STATE.active_tab == "text":
502
+ if GLOBAL_STATE.inference_session is None:
503
+ yield GLOBAL_STATE, "Text video model not loaded.", gr.update()
504
+ return
505
+
506
+ model = _GLOBAL_TEXT_VIDEO_MODEL
507
+ processor = _GLOBAL_TEXT_VIDEO_PROCESSOR
508
+
509
+ text_prompt_to_obj_ids = {}
510
+ for frame_idx, frame_texts in GLOBAL_STATE.text_prompts_by_frame_obj.items():
511
+ for obj_id, text_prompt in frame_texts.items():
512
+ if text_prompt not in text_prompt_to_obj_ids:
513
+ text_prompt_to_obj_ids[text_prompt] = []
514
+ if obj_id not in text_prompt_to_obj_ids[text_prompt]:
515
+ text_prompt_to_obj_ids[text_prompt].append(obj_id)
516
+
517
+ for text_prompt in text_prompt_to_obj_ids:
518
+ text_prompt_to_obj_ids[text_prompt].sort()
519
+
520
+ if not text_prompt_to_obj_ids:
521
+ yield GLOBAL_STATE, "No text prompts found. Please add a text prompt first.", gr.update()
522
+ return
523
+
524
+ for text_prompt in text_prompt_to_obj_ids.keys():
525
+ GLOBAL_STATE.inference_session = processor.add_text_prompt(
526
+ inference_session=GLOBAL_STATE.inference_session,
527
+ text=text_prompt,
528
+ )
529
+
530
+ earliest_frame = (
531
+ min(GLOBAL_STATE.text_prompts_by_frame_obj.keys()) if GLOBAL_STATE.text_prompts_by_frame_obj else 0
532
+ )
533
+
534
+ frames_to_track = GLOBAL_STATE.num_frames - earliest_frame
535
+
536
+ outputs_per_frame = {}
537
+
538
+ for model_outputs in model.propagate_in_video_iterator(
539
+ inference_session=GLOBAL_STATE.inference_session,
540
+ start_frame_idx=earliest_frame,
541
+ max_frame_num_to_track=frames_to_track,
542
+ ):
543
+ processed_outputs = processor.postprocess_outputs(
544
+ GLOBAL_STATE.inference_session,
545
+ model_outputs,
546
+ )
547
+ frame_idx = model_outputs.frame_idx
548
+ outputs_per_frame[frame_idx] = processed_outputs
549
+
550
+ object_ids = processed_outputs["object_ids"]
551
+ masks = processed_outputs["masks"]
552
+ scores = processed_outputs["scores"]
553
+
554
+ masks_for_frame = GLOBAL_STATE.masks_by_frame.setdefault(frame_idx, {})
555
+ frame_texts = GLOBAL_STATE.text_prompts_by_frame_obj.setdefault(frame_idx, {})
556
+
557
+ num_objects = len(object_ids)
558
+ if num_objects > 0:
559
+ if len(scores) > 0:
560
+ sorted_indices = torch.argsort(scores, descending=True).cpu().tolist()
561
+ else:
562
+ sorted_indices = list(range(num_objects))
563
+
564
+ for mask_idx in sorted_indices:
565
+ current_obj_id = int(object_ids[mask_idx].item())
566
+ _ensure_color_for_obj(GLOBAL_STATE, current_obj_id)
567
+ mask_2d = masks[mask_idx].float().cpu().numpy()
568
+ if mask_2d.ndim == 3:
569
+ mask_2d = mask_2d.squeeze()
570
+ mask_2d = (mask_2d > 0.0).astype(np.float32)
571
+ masks_for_frame[current_obj_id] = mask_2d
572
+
573
+ found_prompt = None
574
+ for existing_frame_idx, existing_frame_texts in GLOBAL_STATE.text_prompts_by_frame_obj.items():
575
+ if current_obj_id in existing_frame_texts:
576
+ found_prompt = existing_frame_texts[current_obj_id]
577
+ break
578
+
579
+ if found_prompt is None and text_prompt_to_obj_ids:
580
+ found_prompt = list(text_prompt_to_obj_ids.keys())[0]
581
+
582
+ if found_prompt:
583
+ frame_texts[current_obj_id] = found_prompt
584
+
585
+ GLOBAL_STATE.composited_frames.pop(frame_idx, None)
586
+ last_frame_idx = frame_idx
587
+ processed += 1
588
+ if processed % 30 == 0 or processed == total:
589
+ yield GLOBAL_STATE, f"Propagating masks: {processed}/{total}", gr.update(value=frame_idx)
590
+ else:
591
+ if GLOBAL_STATE.inference_session is None:
592
+ yield GLOBAL_STATE, "Tracker model not loaded.", gr.update()
593
+ return
594
+
595
+ model = _GLOBAL_TRACKER_MODEL
596
+ processor = _GLOBAL_TRACKER_PROCESSOR
597
+
598
+ for sam2_video_output in model.propagate_in_video_iterator(
599
+ inference_session=GLOBAL_STATE.inference_session
600
+ ):
601
+ video_res_masks = processor.post_process_masks(
602
+ [sam2_video_output.pred_masks],
603
+ original_sizes=[
604
+ [GLOBAL_STATE.inference_session.video_height, GLOBAL_STATE.inference_session.video_width]
605
+ ],
606
+ )[0]
607
+
608
+ frame_idx = sam2_video_output.frame_idx
609
+ for i, out_obj_id in enumerate(GLOBAL_STATE.inference_session.obj_ids):
610
+ _ensure_color_for_obj(GLOBAL_STATE, int(out_obj_id))
611
+ mask_2d = video_res_masks[i].cpu().numpy()
612
+ masks_for_frame = GLOBAL_STATE.masks_by_frame.setdefault(frame_idx, {})
613
+ masks_for_frame[int(out_obj_id)] = mask_2d
614
+ GLOBAL_STATE.composited_frames.pop(frame_idx, None)
615
+
616
+ last_frame_idx = frame_idx
617
+ processed += 1
618
+ if processed % 30 == 0 or processed == total:
619
+ yield GLOBAL_STATE, f"Propagating masks: {processed}/{total}", gr.update(value=frame_idx)
620
+
621
+ text = f"Propagated masks across {processed} frames."
622
+ yield GLOBAL_STATE, text, gr.update(value=last_frame_idx)
623
+
624
+
625
+ def reset_session(GLOBAL_STATE: gr.State) -> tuple[AppState, Image.Image, int, int, str]:
626
+ if not GLOBAL_STATE.video_frames:
627
+ return GLOBAL_STATE, None, 0, 0, "Session reset. Load a new video."
628
+
629
+ if GLOBAL_STATE.active_tab == "text":
630
+ if GLOBAL_STATE.video_frames:
631
+ processor = _GLOBAL_TEXT_VIDEO_PROCESSOR
632
+ GLOBAL_STATE.inference_session = processor.init_video_session(
633
+ video=GLOBAL_STATE.video_frames,
634
+ inference_device=_GLOBAL_DEVICE,
635
+ processing_device="cpu",
636
+ video_storage_device="cpu",
637
+ dtype=_GLOBAL_DTYPE,
638
+ )
639
+ elif GLOBAL_STATE.inference_session is not None and hasattr(
640
+ GLOBAL_STATE.inference_session, "reset_inference_session"
641
+ ):
642
+ GLOBAL_STATE.inference_session.reset_inference_session()
643
+ else:
644
+ if GLOBAL_STATE.video_frames:
645
+ processor = _GLOBAL_TRACKER_PROCESSOR
646
+ raw_video = [np.array(frame) for frame in GLOBAL_STATE.video_frames]
647
+ GLOBAL_STATE.inference_session = processor.init_video_session(
648
+ video=raw_video,
649
+ inference_device=_GLOBAL_DEVICE,
650
+ video_storage_device=_GLOBAL_DEVICE,
651
+ processing_device=_GLOBAL_DEVICE,
652
+ inference_state_device=_GLOBAL_DEVICE,
653
+ dtype=_GLOBAL_DTYPE,
654
+ max_vision_features_cache_size=1,
655
+ )
656
+
657
+ GLOBAL_STATE.masks_by_frame.clear()
658
+ GLOBAL_STATE.clicks_by_frame_obj.clear()
659
+ GLOBAL_STATE.boxes_by_frame_obj.clear()
660
+ GLOBAL_STATE.text_prompts_by_frame_obj.clear()
661
+ GLOBAL_STATE.composited_frames.clear()
662
+ GLOBAL_STATE.pending_box_start = None
663
+ GLOBAL_STATE.pending_box_start_frame_idx = None
664
+ GLOBAL_STATE.pending_box_start_obj_id = None
665
+
666
+ gc.collect()
667
+
668
+ current_idx = int(getattr(GLOBAL_STATE, "current_frame_idx", 0))
669
+ current_idx = max(0, min(current_idx, GLOBAL_STATE.num_frames - 1))
670
+ preview_img = update_frame_display(GLOBAL_STATE, current_idx)
671
+ slider_minmax = gr.update(minimum=0, maximum=max(GLOBAL_STATE.num_frames - 1, 0), interactive=True)
672
+ slider_value = gr.update(value=current_idx)
673
+ status = "Session reset. Prompts cleared; video preserved."
674
+ return GLOBAL_STATE, preview_img, slider_minmax, slider_value, status
675
+
676
+
677
+ def _on_video_change_pointbox(GLOBAL_STATE: gr.State, video):
678
+ GLOBAL_STATE, min_idx, max_idx, first_frame, status = init_video_session(GLOBAL_STATE, video, "point_box")
679
+ return (
680
+ GLOBAL_STATE,
681
+ gr.update(minimum=min_idx, maximum=max_idx, value=min_idx, interactive=True),
682
+ first_frame,
683
+ status,
684
+ )
685
+
686
+
687
+ def _on_video_change_text(GLOBAL_STATE: gr.State, video):
688
+ GLOBAL_STATE, min_idx, max_idx, first_frame, status = init_video_session(GLOBAL_STATE, video, "text")
689
+ return (
690
+ GLOBAL_STATE,
691
+ gr.update(minimum=min_idx, maximum=max_idx, value=min_idx, interactive=True),
692
+ first_frame,
693
+ status,
694
+ )
695
+
696
+
697
+ theme = Soft(primary_hue="blue", secondary_hue="rose", neutral_hue="slate")
698
+
699
+ with gr.Blocks(title="SAM3", theme=theme) as demo:
700
+ GLOBAL_STATE = gr.State(AppState())
701
+
702
+ gr.Markdown(
703
+ """
704
+ ### SAM3 Video Tracking · powered by Hugging Face 🤗 Transformers
705
+ Segment and track objects across a video with SAM3 (Segment Anything 3). This demo runs the official implementation from the Hugging Face Transformers library for interactive, promptable video segmentation with point, box, and text prompts.
706
+ """
707
+ )
708
+
709
+ with gr.Tabs() as main_tabs:
710
+ with gr.Tab("Text Prompting"):
711
+ with gr.Row():
712
+ with gr.Column():
713
+ gr.Markdown(
714
+ """
715
+ **Quick start**
716
+ - **Load a video**: Upload your own or pick an example below.
717
+ - Select a frame and enter a text description to segment objects (e.g., "red car", "penguin"). The text prompt will return all the instances of the object in the frame and not specific ones (e.g. not "penguin on the left" but "penguin").
718
+ """
719
+ )
720
+ with gr.Column():
721
+ gr.Markdown(
722
+ """
723
+ **Working with results**
724
+ - **Preview**: Use the slider to navigate frames and see the current masks.
725
+ - **Propagate**: Click "Propagate across video" to track all defined objects through the entire video.
726
+ - **Export**: Render an MP4 for smooth playback using the original video FPS.
727
+ """
728
+ )
729
+
730
+ with gr.Row():
731
+ with gr.Column(scale=1):
732
+ video_in_text = gr.Video(label="Upload video", sources=["upload", "webcam"], interactive=True)
733
+ load_status_text = gr.Markdown(visible=True)
734
+ reset_btn_text = gr.Button("Reset Session", variant="secondary")
735
+ with gr.Column(scale=2):
736
+ preview_text = gr.Image(label="Preview", interactive=True)
737
+ with gr.Row():
738
+ frame_slider_text = gr.Slider(
739
+ label="Frame", minimum=0, maximum=0, step=1, value=0, interactive=True
740
+ )
741
+ with gr.Column(scale=0):
742
+ propagate_btn_text = gr.Button("Propagate across video", variant="primary")
743
+ propagate_status_text = gr.Markdown(visible=True)
744
+ with gr.Row():
745
+ text_prompt_input = gr.Textbox(
746
+ label="Text Prompt",
747
+ placeholder="Enter a text description (e.g., 'person', 'red car', 'short hair')",
748
+ lines=2,
749
+ )
750
+ text_apply_btn = gr.Button("Apply Text Prompt", variant="primary")
751
+ text_status = gr.Markdown(visible=True)
752
+
753
+ with gr.Row():
754
+ render_btn_text = gr.Button("Render MP4 for smooth playback", variant="primary")
755
+ playback_video_text = gr.Video(label="Rendered Playback", interactive=False)
756
+
757
+ examples_list_text = [
758
+ [None, "./deers.mp4"],
759
+ [None, "./penguins.mp4"],
760
+ [None, "./foot.mp4"],
761
+ ]
762
+ with gr.Row():
763
+ gr.Examples(
764
+ examples=examples_list_text,
765
+ inputs=[GLOBAL_STATE, video_in_text],
766
+ fn=_on_video_change_text,
767
+ outputs=[GLOBAL_STATE, frame_slider_text, preview_text, load_status_text],
768
+ label="Examples",
769
+ cache_examples=False,
770
+ examples_per_page=5,
771
+ )
772
+
773
+ with gr.Tab("Point/Box Prompting"):
774
+ with gr.Row():
775
+ with gr.Column():
776
+ gr.Markdown(
777
+ """
778
+ **Quick start**
779
+ - **Load a video**: Upload your own or pick an example below.
780
+ - Select an Object ID and point label (positive/negative), then click the frame to add guidance. You can add **multiple points per object** and define **multiple objects** across frames.
781
+ """
782
+ )
783
+ with gr.Column():
784
+ gr.Markdown(
785
+ """
786
+ **Working with results**
787
+ - **Preview**: Use the slider to navigate frames and see the current masks.
788
+ - **Propagate**: Click "Propagate across video" to track all defined objects through the entire video.
789
+ - **Export**: Render an MP4 for smooth playback using the original video FPS.
790
+ """
791
+ )
792
+
793
+ with gr.Row():
794
+ with gr.Column(scale=1):
795
+ video_in_pointbox = gr.Video(label="Upload video", sources=["upload", "webcam"], interactive=True)
796
+ load_status_pointbox = gr.Markdown(visible=True)
797
+ reset_btn_pointbox = gr.Button("Reset Session", variant="secondary")
798
+ with gr.Column(scale=2):
799
+ preview_pointbox = gr.Image(label="Preview", interactive=True)
800
+ with gr.Row():
801
+ frame_slider_pointbox = gr.Slider(
802
+ label="Frame", minimum=0, maximum=0, step=1, value=0, interactive=True
803
+ )
804
+ with gr.Column(scale=0):
805
+ propagate_btn_pointbox = gr.Button("Propagate across video", variant="primary")
806
+ propagate_status_pointbox = gr.Markdown(visible=True)
807
+
808
+ with gr.Row():
809
+ obj_id_inp = gr.Number(value=1, precision=0, label="Object ID", scale=0)
810
+ label_radio = gr.Radio(choices=["positive", "negative"], value="positive", label="Point label")
811
+ clear_old_chk = gr.Checkbox(value=False, label="Clear old inputs for this object")
812
+ prompt_type = gr.Radio(choices=["Points", "Boxes"], value="Points", label="Prompt type")
813
+
814
+ with gr.Row():
815
+ render_btn_pointbox = gr.Button("Render MP4 for smooth playback", variant="primary")
816
+ playback_video_pointbox = gr.Video(label="Rendered Playback", interactive=False)
817
+
818
+ examples_list_pointbox = [
819
+ [None, "./deers.mp4"],
820
+ [None, "./penguins.mp4"],
821
+ [None, "./foot.mp4"],
822
+ ]
823
+ with gr.Row():
824
+ gr.Examples(
825
+ examples=examples_list_pointbox,
826
+ inputs=[GLOBAL_STATE, video_in_pointbox],
827
+ fn=_on_video_change_pointbox,
828
+ outputs=[GLOBAL_STATE, frame_slider_pointbox, preview_pointbox, load_status_pointbox],
829
+ label="Examples",
830
+ cache_examples=False,
831
+ examples_per_page=5,
832
+ )
833
+
834
+ video_in_pointbox.change(
835
+ _on_video_change_pointbox,
836
+ inputs=[GLOBAL_STATE, video_in_pointbox],
837
+ outputs=[GLOBAL_STATE, frame_slider_pointbox, preview_pointbox, load_status_pointbox],
838
+ show_progress=True,
839
+ )
840
+
841
+ def _sync_frame_idx_pointbox(state_in: AppState, idx: int):
842
+ if state_in is not None:
843
+ state_in.current_frame_idx = int(idx)
844
+ return update_frame_display(state_in, int(idx))
845
+
846
+ frame_slider_pointbox.change(
847
+ _sync_frame_idx_pointbox,
848
+ inputs=[GLOBAL_STATE, frame_slider_pointbox],
849
+ outputs=preview_pointbox,
850
+ )
851
+
852
+ video_in_text.change(
853
+ _on_video_change_text,
854
+ inputs=[GLOBAL_STATE, video_in_text],
855
+ outputs=[GLOBAL_STATE, frame_slider_text, preview_text, load_status_text],
856
+ show_progress=True,
857
+ )
858
+
859
+ def _sync_frame_idx_text(state_in: AppState, idx: int):
860
+ if state_in is not None:
861
+ state_in.current_frame_idx = int(idx)
862
+ return update_frame_display(state_in, int(idx))
863
+
864
+ frame_slider_text.change(
865
+ _sync_frame_idx_text,
866
+ inputs=[GLOBAL_STATE, frame_slider_text],
867
+ outputs=preview_text,
868
+ )
869
+
870
+ def _sync_obj_id(s: AppState, oid):
871
+ if s is not None and oid is not None:
872
+ s.current_obj_id = int(oid)
873
+ return gr.update()
874
+
875
+ obj_id_inp.change(_sync_obj_id, inputs=[GLOBAL_STATE, obj_id_inp], outputs=[])
876
+
877
+ def _sync_label(s: AppState, lab: str):
878
+ if s is not None and lab is not None:
879
+ s.current_label = str(lab)
880
+ return gr.update()
881
+
882
+ label_radio.change(_sync_label, inputs=[GLOBAL_STATE, label_radio], outputs=[])
883
+
884
+ def _sync_prompt_type(s: AppState, val: str):
885
+ if s is not None and val is not None:
886
+ s.current_prompt_type = str(val)
887
+ s.pending_box_start = None
888
+ is_points = str(val).lower() == "points"
889
+ updates = [
890
+ gr.update(visible=is_points),
891
+ gr.update(interactive=is_points) if is_points else gr.update(value=True, interactive=False),
892
+ ]
893
+ return updates
894
+
895
+ prompt_type.change(
896
+ _sync_prompt_type,
897
+ inputs=[GLOBAL_STATE, prompt_type],
898
+ outputs=[label_radio, clear_old_chk],
899
+ )
900
+
901
+ preview_pointbox.select(
902
+ on_image_click,
903
+ [preview_pointbox, GLOBAL_STATE, frame_slider_pointbox, obj_id_inp, label_radio, clear_old_chk],
904
+ preview_pointbox,
905
+ )
906
+
907
+ def _on_text_apply(state: AppState, frame_idx: int, text: str):
908
+ img, status = on_text_prompt(state, frame_idx, text)
909
+ return img, status
910
+
911
+ text_apply_btn.click(
912
+ _on_text_apply,
913
+ inputs=[GLOBAL_STATE, frame_slider_text, text_prompt_input],
914
+ outputs=[preview_text, text_status],
915
+ )
916
+
917
+ def _render_video(s: AppState):
918
+ if s is None or s.num_frames == 0:
919
+ raise gr.Error("Load a video first.")
920
+ fps = s.video_fps if s.video_fps and s.video_fps > 0 else 12
921
+ frames_np = []
922
+ first = compose_frame(s, 0)
923
+ h, w = first.size[1], first.size[0]
924
+ for idx in range(s.num_frames):
925
+ img = s.composited_frames.get(idx)
926
+ if img is None:
927
+ img = compose_frame(s, idx)
928
+ frames_np.append(np.array(img)[:, :, ::-1])
929
+ if (idx + 1) % 60 == 0:
930
+ gc.collect()
931
+ out_path = "/tmp/sam3_playback.mp4"
932
+ try:
933
+ fourcc = cv2.VideoWriter_fourcc(*"mp4v")
934
+ writer = cv2.VideoWriter(out_path, fourcc, fps, (w, h))
935
+ for fr_bgr in frames_np:
936
+ writer.write(fr_bgr)
937
+ writer.release()
938
+ return out_path
939
+ except Exception as e:
940
+ print(f"Failed to render video with cv2: {e}")
941
+ raise gr.Error(f"Failed to render video: {e}")
942
+
943
+ render_btn_pointbox.click(_render_video, inputs=[GLOBAL_STATE], outputs=[playback_video_pointbox])
944
+ render_btn_text.click(_render_video, inputs=[GLOBAL_STATE], outputs=[playback_video_text])
945
+
946
+ propagate_btn_pointbox.click(
947
+ propagate_masks,
948
+ inputs=[GLOBAL_STATE],
949
+ outputs=[GLOBAL_STATE, propagate_status_pointbox, frame_slider_pointbox],
950
+ )
951
+
952
+ propagate_btn_text.click(
953
+ propagate_masks,
954
+ inputs=[GLOBAL_STATE],
955
+ outputs=[GLOBAL_STATE, propagate_status_text, frame_slider_text],
956
+ )
957
+
958
+ reset_btn_pointbox.click(
959
+ reset_session,
960
+ inputs=GLOBAL_STATE,
961
+ outputs=[GLOBAL_STATE, preview_pointbox, frame_slider_pointbox, frame_slider_pointbox, load_status_pointbox],
962
+ )
963
+
964
+ reset_btn_text.click(
965
+ reset_session,
966
+ inputs=GLOBAL_STATE,
967
+ outputs=[GLOBAL_STATE, preview_text, frame_slider_text, frame_slider_text, load_status_text],
968
+ )
969
+
970
+
971
+ demo.queue(api_open=False).launch()
deers.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e60c4974bbfff98d16e8f264a54d9f84084c5591fdb8455d64449561eb74714
3
+ size 3401495
foot.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e7f86a74b9fa12322024ce4e60c27a2c86acf65abfa32b0a3e3dc44163de96b
3
+ size 2359941
penguins.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a7776418857bd05405fa055cce364f122eafd418be489e88ff7955b4dfd427a
3
+ size 4573098
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ gradio
2
+ torch
3
+ torchvision
4
+ pillow
5
+ opencv-python
6
+ imageio[pyav]
7
+ accelerate
8
+
transformers-5.0.0.dev0-py3-none-any.whl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3fe5e3a03f2b46d47b6d99c458175fc8caea263fc89be1ae4f5cd5500375ecc
3
+ size 11545319