import gradio as gr import requests import os import pandas as pd import json import ssl import random from elo import update_elo_ratings # Custom function for ELO ratings enable_btn = gr.Button.update(interactive=True) import sqlite3 import requests def classify_vote(user_input): url = "https://api-inference.huggingface.co/models/facebook/bart-large-mnli" headers = { "accept": "*/*", "accept-language": "en-US,en;q=0.9", "content-type": "application/json", "sec-ch-ua": "\"Not A(Brand\";v=\"99\", \"Microsoft Edge\";v=\"121\", \"Chromium\";v=\"121\"", "sec-ch-ua-mobile": "?0", "sec-ch-ua-platform": "\"macOS\"", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site" } payload = { "inputs": user_input, "parameters": { "candidate_labels": "roleplay,small talk,mathematics,logic,creative", "multi_class": True } } response = requests.post(url, headers=headers, json=payload) if response.status_code == 200: response_data = response.json() top_category = response_data["labels"][0].strip() return top_category else: print(f"Error: {response.status_code}") return None from pymongo.mongo_client import MongoClient from pymongo.server_api import ServerApi async def direct_regenerate(model, user_input, chatbot, character_name, character_description, user_name): adapter = next(entry['adapter'] for entry in chatbots_data if entry['original_model'] == model) temp_state = { "history": [ [{"role": "user", "content": chatbot[-1][0]}] # Keep the user's last message ] } response = await get_bot_response(adapter, user_input, temp_state, 0, character_name, character_description, user_name) chatbot[-1] = (chatbot[-1][0], response) # Update only the assistant's response return "", chatbot password=os.environ.get("MONGODB") def init_database(): uri = f"mongodb+srv://new-user:{password}@cluster0.xb2urf6.mongodb.net/?retryWrites=true&w=majority&appName=Cluster0" client = MongoClient(uri) db = client["elo_ratings"] collection = db["elo_ratings"] return collection import json with open('chatbots.txt', 'r') as file: chatbots_data = json.load(file) chatbots = [entry['adapter'] for entry in chatbots_data] def clear_chat(state): # Reset state including the chatbot order state = {} if state is not None else state # Initialize the collection object collection = init_database() # Get the list of adapter names adapter_names = [entry['adapter'] for entry in chatbots_data] # Randomly select two new adapters selected_adapters = random.sample(adapter_names, 2) state['last_bots'] = selected_adapters # Reset other components specific to the "Chatbot Arena" tab return state, [], [], gr.Button.update(interactive=False), gr.Button.update(interactive=False), gr.Textbox.update(value='', interactive=True), gr.Button.update(interactive=True) from datasets import load_dataset,DatasetDict,Dataset import requests import os # Function to get bot response def format_prompt(state, bot_index, character_name, character_description, user_name, num_messages=20): if character_name is None or character_name.strip() == "": character_name = "Ryan" if character_description is None or character_description.strip() == "": character_description = "Ryan is a college student who is always willing to help. He knows a lot about math and coding." if user_name is None or user_name.strip() == "": user_name = "You" prompt = f"{character_description}\n\n" # Get the last num_messages messages from the conversation history recent_messages = state["history"][bot_index][-num_messages:] for message in recent_messages: if message['role'] == 'user': prompt += f"{user_name}: {message['content']}\n" else: prompt += f"{character_name}: {message['content']}\n" prompt += f"{character_name}:" print(prompt) return prompt import aiohttp import asyncio from tenacity import retry, stop_after_attempt, wait_exponential async def get_bot_response(adapter_id, prompt, state, bot_index, character_name, character_description, user_name): prompt = format_prompt(state, bot_index, character_name, character_description, user_name) fireworks_adapter_name = next(entry['fireworks_adapter_name'] for entry in chatbots_data if entry['adapter'] == adapter_id) url = "https://api.fireworks.ai/inference/v1/completions" payload = { "model": f"accounts/gaingg19-432d9f/models/{fireworks_adapter_name}", "max_tokens": 250, "temperature": 0.7, "prompt": prompt, "stop": ["<|im_end|>",f"{character_name}:",f"{user_name}:"] } headers = { "Accept": "application/json", "Content-Type": "application/json", "Authorization": f"Bearer {os.environ.get('FIREWORKS_API_KEY')}" } async with aiohttp.ClientSession() as session: try: async with session.post(url, json=payload, headers=headers, timeout=30) as response: if response.status == 200: response_data = await response.json() response_text = response_data['choices'][0]['text'] else: error_text = await response.text() print(error_text) response_text = "Sorry, I couldn't generate a response." except (aiohttp.ClientError, asyncio.TimeoutError): response_text = "Sorry, I couldn't generate a response." return response_text.strip() async def chat_with_bots(user_input, state, character_name, character_description, user_name): # Use existing bot order from state if available, otherwise shuffle and initialize if 'last_bots' not in state or not state['last_bots']: random.shuffle(chatbots) state['last_bots'] = [chatbots[0], chatbots[1]] bot1_adapter, bot2_adapter = state['last_bots'][0], state['last_bots'][1] bot1_response, bot2_response = await asyncio.gather( get_bot_response(bot1_adapter, user_input, state, 0, character_name, character_description, user_name), get_bot_response(bot2_adapter, user_input, state, 1, character_name, character_description, user_name) ) return bot1_response.replace("<|im_end|>",""), bot2_response.replace("<|im_end|>","") def update_ratings(state, winner_index, collection, category): elo_ratings = get_user_elo_ratings(collection) winner_adapter = state['last_bots'][winner_index] loser_adapter = state['last_bots'][1 - winner_index] winner = next(entry['original_model'] for entry in chatbots_data if entry['adapter'] == winner_adapter) loser = next(entry['original_model'] for entry in chatbots_data if entry['adapter'] == loser_adapter) elo_ratings = update_elo_ratings(elo_ratings, winner_adapter, loser_adapter, category) update_elo_rating(collection, elo_ratings, winner_adapter, loser_adapter, category) return [('Winner: ', winner), ('Loser: ', loser)] def vote_up_model(state, chatbot, chatbot2, user_input): collection = init_database() top_category = classify_vote(user_input) if top_category: update_message = update_ratings(state, 0, collection, top_category) chatbot.append(update_message[0]) chatbot2.append(update_message[1]) return chatbot, chatbot2, gr.Button.update(interactive=False), gr.Button.update(interactive=False), gr.Textbox.update(interactive=False), gr.Button.update(interactive=False) def vote_down_model(state, chatbot, chatbot2, user_input): collection = init_database() top_category = classify_vote(user_input) if top_category: update_message = update_ratings(state, 1, collection, top_category) chatbot2.append(update_message[0]) chatbot.append(update_message[1]) return chatbot, chatbot2, gr.Button.update(interactive=False), gr.Button.update(interactive=False), gr.Textbox.update(interactive=False), gr.Button.update(interactive=False) async def user_ask(state, chatbot1, chatbot2, textbox, character_name, character_description, user_name): if character_name and len(character_name) > 20: character_name = character_name[:20] # Limit character name to 20 characters if character_description and len(character_description) > 500: character_description = character_description[:500] # Limit character description to 200 characters if user_name and len(user_name) > 20: user_name = user_name[:20] # Limit user name to 20 characters global enable_btn user_input = textbox if len(user_input) > 500: user_input = user_input[:500] # Limit user input to 200 characters collection = init_database() # Initialize the collection object # Keep only the last 10 messages in history # Updating state with the current ELO ratings state["elo_ratings"] = get_user_elo_ratings(collection) if "history" not in state: state.update({'history': [[],[]]}) state["history"][0].extend([ {"role": "user", "content": user_input}]) state["history"][1].extend([ {"role": "user", "content": user_input}]) if len(state["history"][0])>20: state["history"][0] = state["history"][0][-20:] state["history"][1] = state["history"][1][-20:] # Chat with bots bot1_response, bot2_response = await chat_with_bots(user_input, state, character_name, character_description, user_name) state["history"][0].extend([ {"role": "bot1", "content": bot1_response}, ]) state["history"][1].extend([ {"role": "bot2", "content": bot2_response}, ]) chatbot1.append((user_input,bot1_response)) chatbot2.append((user_input,bot2_response)) # Keep only the last 10 messages in history # Format the conversation in ChatML format return state, chatbot1, chatbot2, gr.update(value=''),enable_btn,enable_btn import pandas as pd # Function to generate leaderboard data import requests def submit_model(model_name): discord_url = os.environ.get("DISCORD_URL") if discord_url: payload = { "content": f"New model submitted: {model_name}" } response = requests.post(discord_url, json=payload) if response.status_code == 204: return "Model submitted successfully!" else: return "Failed to submit the model." else: return "Discord webhook URL not configured." def get_user_elo_ratings(collection): rows = list(collection.find()) if rows: elo_ratings = {} for row in rows: bot_name = row['bot_name'] if bot_name not in elo_ratings: elo_ratings[bot_name] = {} for category in row['categories']: elo_ratings[bot_name][category] = {'elo_rating': row['categories'][category]['elo_rating'], 'games_played': row['categories'][category]['games_played']} return elo_ratings else: return {"default": {'overall': {'elo_rating': 1200, 'games_played': 0}}} def update_elo_rating(collection, updated_ratings, winner, loser, category): collection.update_one({"bot_name": winner}, {"$set": {f"categories.{category}.elo_rating": updated_ratings[winner][category]['elo_rating'], f"categories.{category}.games_played": updated_ratings[winner][category]['games_played']}}, upsert=True) collection.update_one({"bot_name": loser}, {"$set": {f"categories.{category}.elo_rating": updated_ratings[loser][category]['elo_rating'], f"categories.{category}.games_played": updated_ratings[loser][category]['games_played']}}, upsert=True) def generate_leaderboard(collection): rows = list(collection.find()) leaderboard_data = [] for row in rows: bot_name = row['bot_name'] original_model = next(entry['original_model'] for entry in chatbots_data if entry['adapter'] == bot_name) total_elo = sum(category['elo_rating'] for category in row['categories'].values()) total_games = sum(category['games_played'] for category in row['categories'].values()) avg_elo = total_elo / len(row['categories']) if len(row['categories']) > 0 else 0 leaderboard_data.append([original_model, avg_elo, total_games]) leaderboard_data = pd.DataFrame(leaderboard_data, columns=['Chatbot', 'Avg ELO Score', 'Total Games Played']) leaderboard_data['Avg ELO Score'] = leaderboard_data['Avg ELO Score'].round().astype(int) leaderboard_data = leaderboard_data.sort_values('Avg ELO Score', ascending=False) return leaderboard_data def refresh_leaderboard(): collection = init_database() leaderboard_data = generate_leaderboard(collection) return leaderboard_data async def direct_chat(model, user_input, state, chatbot, character_name, character_description, user_name): adapter = next(entry['adapter'] for entry in chatbots_data if entry['original_model'] == model) if "direct_history" not in state: state["direct_history"] = [] if len(state["direct_history"])>20: state["direct_history"] = state["direct_history"][-20:] state["direct_history"].append({"role": "user", "content": user_input}) temp_state = { "history": [ state["direct_history"], state["direct_history"] ] } response = await get_bot_response(adapter, user_input, temp_state, 0, character_name, character_description, user_name) chatbot.append((user_input, response)) state["direct_history"].append({"role": "bot", "content": response}) return "", chatbot, state def reset_direct_chat(state): state["direct_history"] = [] return [], gr.Textbox.update(value=''), state refresh_leaderboard() # Gradio interface setup # Gradio interface setup with gr.Blocks() as demo: state = gr.State({}) with gr.Tab("🤖 Chatbot Arena"): gr.Markdown("## 🥊 Let's see which chatbot wins!") with gr.Row(): with gr.Column(): chatbot1 = gr.Chatbot(label='🤖 Model A').style(height=350) upvote_btn_a = gr.Button(value="👍 Upvote A", interactive=False).style(full_width=True) with gr.Column(): chatbot2 = gr.Chatbot(label='🤖 Model B').style(height=350) upvote_btn_b = gr.Button(value="👍 Upvote B", interactive=False).style(full_width=True) with gr.Row(): with gr.Column(scale=5): textbox = gr.Textbox(placeholder="🎤 Enter your prompt (up to 500 characters)") submit_btn = gr.Button(value="Submit") with gr.Row(): reset_btn = gr.Button(value="🗑️ Reset") with gr.Row(): character_name = gr.Textbox(label="Character Name", value="Ryan", placeholder="Enter character name (max 20 chars)") character_description = gr.Textbox(label="Character Description", value="Ryan is a college student who is always willing to help. He knows a lot about math and coding.", placeholder="Enter character description (max 500 chars)") with gr.Row(): user_name = gr.Textbox(label="Your Name", value="You", placeholder="Enter your name (max 20 chars)") # ... reset_btn.click(clear_chat, inputs=[state], outputs=[state, chatbot1, chatbot2, upvote_btn_a, upvote_btn_b, textbox, submit_btn]) submit_btn.click(user_ask, inputs=[state, chatbot1, chatbot2, textbox, character_name, character_description, user_name], outputs=[state, chatbot1, chatbot2, textbox, upvote_btn_a, upvote_btn_b], queue=True) textbox.submit(user_ask, inputs=[state, chatbot1, chatbot2, textbox, character_name, character_description, user_name], outputs=[state, chatbot1, chatbot2, textbox, upvote_btn_a, upvote_btn_b], queue=True) collection = init_database() upvote_btn_a.click(vote_up_model, inputs=[state, chatbot1, chatbot2, textbox], outputs=[chatbot1, chatbot2, upvote_btn_a, upvote_btn_b, textbox, submit_btn]) upvote_btn_b.click(vote_down_model, inputs=[state, chatbot1, chatbot2, textbox], outputs=[chatbot1, chatbot2, upvote_btn_a, upvote_btn_b, textbox, submit_btn]) with gr.Tab("💬 Direct Chat"): gr.Markdown("## 🗣️ Chat directly with a model!") with gr.Row(): model_dropdown = gr.Dropdown(choices=[entry['original_model'] for entry in chatbots_data], value=chatbots_data[0]['original_model'], label="🤖 Select a model") with gr.Row(): direct_chatbot = gr.Chatbot(label="💬 Direct Chat").style(height=500) with gr.Row(): with gr.Column(scale=5): direct_textbox = gr.Textbox(placeholder="💭 Enter your message") direct_submit_btn = gr.Button(value="Submit") with gr.Row(): direct_regenerate_btn = gr.Button(value="🔄 Regenerate") direct_reset_btn = gr.Button(value="🗑️ Reset Chat") # ... direct_regenerate_btn.click(direct_regenerate, inputs=[model_dropdown, direct_textbox, direct_chatbot, character_name, character_description, user_name], outputs=[direct_textbox, direct_chatbot]) direct_textbox.submit(direct_chat, inputs=[model_dropdown, direct_textbox, state, direct_chatbot, character_name, character_description, user_name], outputs=[direct_textbox, direct_chatbot, state]) direct_submit_btn.click(direct_chat, inputs=[model_dropdown, direct_textbox, state, direct_chatbot, character_name, character_description, user_name], outputs=[direct_textbox, direct_chatbot, state]) direct_reset_btn.click(reset_direct_chat, inputs=[state], outputs=[direct_chatbot, direct_textbox, state]) with gr.Tab("🏆 Leaderboard"): gr.Markdown("## 📊 Check out the top-performing models!") try: leaderboard = gr.Dataframe(refresh_leaderboard()) except: leaderboard = gr.Dataframe() with gr.Row(): refresh_btn = gr.Button("🔄 Refresh Leaderboard") refresh_btn.click(refresh_leaderboard, outputs=[leaderboard]) with gr.Tab("📨 Submit Model"): gr.Markdown("## 📨 Submit a new model to be added to the chatbot arena!") with gr.Row(): model_name_input = gr.Textbox(placeholder="Enter the model name") submit_model_btn = gr.Button(value="Submit Model") submit_model_btn.click(submit_model, inputs=[model_name_input], outputs=[model_name_input]) # Launch the Gradio interface if __name__ == "__main__": demo.launch(share=False)