Spaces:
Runtime error
Runtime error
File size: 17,946 Bytes
a5b48a7 df24d9c a5b48a7 ffb29d4 0b9c45d a5b48a7 c003b8d a5b48a7 4097bac 6c0f7f0 4097bac d51f0d6 0668dc0 8e00642 30ed04f 7d8811f 30ed04f 0668dc0 7d8811f 30ed04f 5158e04 d51f0d6 3d43b2c 6c0f7f0 3d43b2c 6c0f7f0 5425a03 deb8f35 3c23026 e2a026e 5425a03 65c4df1 7ca6d3a 65c4df1 1823a15 e9bb75c 40c75e9 038196b 40c75e9 038196b 40c75e9 df177c1 5425a03 b4b5ce5 7d3d77d a272cb9 7d3d77d e2a026e 5b3f957 0072fd4 3e0a4e9 ae55774 3f7660a 3e0a4e9 ae55774 3f7660a 29ce4b1 3f7660a 19deb78 45d1701 69a7095 0f925b8 69a7095 3f7660a 69a7095 5170342 dfb47fb 3f0dbd7 5170342 84fe385 7178e21 84fe385 12faba6 221dd2e 566635f 82e5a89 566635f 5170342 e417351 7178e21 84fe385 7ca6d3a 84fe385 7178e21 84fe385 dfb47fb 84fe385 dfb47fb 84fe385 dfb47fb e675f6b dfb47fb e675f6b 84fe385 bb4f1f0 e9bb75c 7ca6d3a 3421166 7ca6d3a bb4f1f0 8909c53 bb4f1f0 8909c53 4f778fa 5425a03 e5ad8a7 5425a03 e5ad8a7 5425a03 e5ad8a7 5425a03 8e50330 5425a03 c2ebbec 5425a03 bb4f1f0 0835304 1e2df10 0835304 41b12a8 ffef722 1e2df10 0b25d1f 3c23026 cbc49f6 5b3f957 c25a9e9 360577c 6eb3c68 a2df623 0072fd4 5b3f957 bb4f1f0 5170342 6eb3c68 5b3f957 6eb3c68 25a4d3c 0b25d1f 5b3f957 cf47250 5b3f957 66afc6f 4db4ec7 dad0315 e1b1c8f 0d45e75 e1b1c8f 3c23026 5425a03 1d622a1 5425a03 e5f7a31 3c23026 bb0fbc1 0072fd4 65c4df1 d1d734e 0072fd4 d1d734e 0072fd4 c5494d3 0072fd4 c5494d3 0072fd4 0668dc0 cbc3047 0072fd4 a62bdda e1ddfc1 5b3f957 628ad2b 0b25d1f 3c23026 5c74d7e f1d1dd8 de1d1bb 5c74d7e f1d1dd8 de1d1bb 5c74d7e 30ed04f 5c74d7e 1e2df10 4609e4a d611593 5170342 af861f7 5c74d7e cbc49f6 7d001db 30ed04f 5c74d7e 628ad2b 5425a03 de1d1bb 5c74d7e 5425a03 5c74d7e 65c4df1 bde2561 5c74d7e 83df2c0 4609e4a c4c018d 5c74d7e 3c23026 e46ce4e 0072fd4 a62bdda 5c74d7e 3704691 f7dd537 3704691 628ad2b 5c74d7e 43c28d5 e1b1c8f 6d84004 e1b1c8f 6d84004 e1b1c8f f1d1dd8 628ad2b ca86104 3c23026 2ba09fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
import gradio as gr
import requests
import os
import pandas as pd
import json
import ssl
import random
from elo import update_elo_ratings # Custom function for ELO ratings
enable_btn = gr.Button.update(interactive=True)
import sqlite3
import pymongo
import urllib
mongo_uri = "mongodb://username:" + urllib.parse.quote("p@ssword") + "@127.0.0.1:27001/"
client = pymongo.MongoClient(mongo_uri)
from pymongo.mongo_client import MongoClient
from pymongo.server_api import ServerApi
async def direct_regenerate(model, user_input, chatbot, character_name, character_description, user_name):
adapter = next(entry['adapter'] for entry in chatbots_data if entry['original_model'] == model)
temp_state = {
"history": [
[{"role": "user", "content": chatbot[-1][0]}] # Keep the user's last message
]
}
response = await get_bot_response(adapter, user_input, temp_state, 0, character_name, character_description, user_name)
chatbot[-1] = (chatbot[-1][0], response) # Update only the assistant's response
return "", chatbot
password=os.environ.get("MONGODB")
#def init_database():
# uri = "mongodb://username:" + urllib.parse.quote("p@ssword") + "@127.0.0.1:27001/"
#uri = "mongodb+srv://minh1228:" + urllib.parse.quote(f"{password}") + "@cluster0minp.f7ruf.mongodb.net/?retryWrites=true&w=majority&appName=Cluster0MinP"
#client = pymongo.MongoClient(uri)
#db = client["elo_ratings"]
#collection = db["elo_ratings"]
#return collection
def init_database():
password=os.environ.get("MONGODB")
username = "minh1228"
uri = f"mongodb+srv://{username}:{urllib.parse.quote(password)}@cluster0minp.f7ruf.mongodb.net/?retryWrites=true&w=majority&appName=Cluster0MinP"
client = pymongo.MongoClient(uri)
db = client["elo_ratings"]
collection = db["elo_ratings"]
return collection
def get_user_elo_ratings(collection):
rows = list(collection.find())
if rows:
return {row['bot_name']: {'elo_rating': row['elo_rating'], 'games_played': row['games_played']} for row in rows}
else:
return {"default": {'elo_rating': 1200, 'games_played': 0}}
def update_elo_rating(collection, updated_ratings, winner, loser):
collection.update_one({"bot_name": winner}, {"$set": {"elo_rating": updated_ratings[winner]['elo_rating'], "games_played": updated_ratings[winner]['games_played']}}, upsert=True)
collection.update_one({"bot_name": loser}, {"$set": {"elo_rating": updated_ratings[loser]['elo_rating'], "games_played": updated_ratings[loser]['games_played']}}, upsert=True)
import json
with open('chatbots.txt', 'r') as file:
chatbots_data = json.load(file)
chatbots = [entry['adapter'] for entry in chatbots_data]
def clear_chat(state):
# Reset state including the chatbot order
state = {} if state is not None else state
# Initialize the collection object
collection = init_database()
# Get the list of adapter names
adapter_names = [entry['adapter'] for entry in chatbots_data]
# Randomly select two new adapters
selected_adapters = random.sample(adapter_names, 2)
state['last_bots'] = selected_adapters
# Reset other components specific to the "Chatbot Arena" tab
return state, [], [], gr.Button.update(interactive=False), gr.Button.update(interactive=False), gr.Textbox.update(value='', interactive=True), gr.Button.update(interactive=True)
from datasets import load_dataset,DatasetDict,Dataset
import requests
import os
# Function to get bot response
def format_prompt(state, bot_index, character_name, character_description, user_name, num_messages=20):
if character_name is None or character_name.strip() == "":
character_name = "Assistant"
if character_description is None or character_description.strip() == "":
character_description = "The following is a conversation with an AI Large Language Model. The AI has been trained to answer questions, provide recommendations, and help with decision making. The AI follows user requests. The AI thinks outside the box."
if user_name is None or user_name.strip() == "":
user_name = "You"
prompt = f"The following is a conversation between {user_name} and {character_name}.\n\n"
# Get the last num_messages messages from the conversation history
recent_messages = state["history"][bot_index][-num_messages:]
for message in recent_messages:
if message['role'] == 'user':
prompt += f"<|im_start|>user {message['content']}<|im_end|>\n"
else:
prompt += f"<|im_start|>assistant {message['content']}<|im_end|>\n"
prompt += f"<|im_start|>assistant"
return prompt
import aiohttp
import asyncio
from tenacity import retry, stop_after_attempt, wait_exponential
async def get_bot_response(adapter_id, prompt, state, bot_index, character_name, character_description, user_name):
prompt = format_prompt(state, bot_index, character_name, character_description, user_name)
fireworks_adapter_name = next(entry['fireworks_adapter_name'] for entry in chatbots_data if entry['adapter'] == adapter_id)
url = "https://api.fireworks.ai/inference/v1/completions"
payload = {
"model": f"accounts/gaingg19-432d9f/models/{fireworks_adapter_name}",
"max_tokens": 250,
"temperature": 0.3,
"top_p":0.1,
"presence_penalty":1.18,
"top_k":40,
"prompt": prompt,
"stop": ["<|im_end|>",f"{character_name}:",f"{user_name}:"]
}
headers = {
"Accept": "application/json",
"Content-Type": "application/json",
"Authorization": f"Bearer {os.environ.get('FIREWORKS_API_KEY')}"
}
async with aiohttp.ClientSession() as session:
try:
async with session.post(url, json=payload, headers=headers, timeout=30) as response:
if response.status == 200:
response_data = await response.json()
response_text = response_data['choices'][0]['text']
else:
error_text = await response.text()
print(error_text)
response_text = "Sorry, I couldn't generate a response."
except (aiohttp.ClientError, asyncio.TimeoutError):
response_text = "Sorry, I couldn't generate a response."
return response_text.strip()
async def chat_with_bots(user_input, state, character_name, character_description, user_name):
# Use existing bot order from state if available, otherwise shuffle and initialize
if 'last_bots' not in state or not state['last_bots']:
random.shuffle(chatbots)
state['last_bots'] = [chatbots[0], chatbots[1]]
bot1_adapter, bot2_adapter = state['last_bots'][0], state['last_bots'][1]
bot1_response, bot2_response = await asyncio.gather(
get_bot_response(bot1_adapter, user_input, state, 0, character_name, character_description, user_name),
get_bot_response(bot2_adapter, user_input, state, 1, character_name, character_description, user_name)
)
return bot1_response.replace("<|im_end|>",""), bot2_response.replace("<|im_end|>","")
def update_ratings(state, winner_index, collection):
elo_ratings = get_user_elo_ratings(collection)
winner_adapter = state['last_bots'][winner_index]
loser_adapter = state['last_bots'][1 - winner_index]
winner = next(entry['original_model'] for entry in chatbots_data if entry['adapter'] == winner_adapter)
loser = next(entry['original_model'] for entry in chatbots_data if entry['adapter'] == loser_adapter)
elo_ratings = update_elo_ratings(elo_ratings, winner_adapter, loser_adapter)
update_elo_rating(collection, elo_ratings, winner_adapter, loser_adapter)
return [('Winner: ', winner), ('Loser: ', loser)]
def vote_up_model(state, chatbot, chatbot2):
collection = init_database()
update_message = update_ratings(state, 0, collection)
chatbot.append(update_message[0])
chatbot2.append(update_message[1])
return chatbot, chatbot2, gr.Button.update(interactive=False), gr.Button.update(interactive=False), gr.Textbox.update(interactive=False), gr.Button.update(interactive=False)
def vote_down_model(state, chatbot, chatbot2):
collection = init_database()
update_message = update_ratings(state, 1, collection)
chatbot2.append(update_message[0])
chatbot.append(update_message[1])
return chatbot, chatbot2, gr.Button.update(interactive=False), gr.Button.update(interactive=False), gr.Textbox.update(interactive=False), gr.Button.update(interactive=False)
async def user_ask(state, chatbot1, chatbot2, textbox, character_name, character_description, user_name):
if character_name and len(character_name) > 20:
character_name = character_name[:20] # Limit character name to 20 characters
if character_description and len(character_description) > 500:
character_description = character_description[:500] # Limit character description to 200 characters
if user_name and len(user_name) > 20:
user_name = user_name[:20] # Limit user name to 20 characters
global enable_btn
user_input = textbox
if len(user_input) > 500:
user_input = user_input[:500] # Limit user input to 200 characters
collection = init_database() # Initialize the collection object
# Keep only the last 10 messages in history
# Updating state with the current ELO ratings
state["elo_ratings"] = get_user_elo_ratings(collection)
if "history" not in state:
state.update({'history': [[],[]]})
state["history"][0].extend([
{"role": "user", "content": user_input}])
state["history"][1].extend([
{"role": "user", "content": user_input}])
if len(state["history"][0])>20:
state["history"][0] = state["history"][0][-20:]
state["history"][1] = state["history"][1][-20:]
# Chat with bots
bot1_response, bot2_response = await chat_with_bots(user_input, state, character_name, character_description, user_name)
state["history"][0].extend([
{"role": "bot1", "content": bot1_response},
])
state["history"][1].extend([
{"role": "bot2", "content": bot2_response},
])
chatbot1.append((user_input,bot1_response))
chatbot2.append((user_input,bot2_response))
# Keep only the last 10 messages in history
# Format the conversation in ChatML format
return state, chatbot1, chatbot2, gr.update(value=''),enable_btn,enable_btn
import pandas as pd
# Function to generate leaderboard data
import requests
def submit_model(model_name):
discord_url = os.environ.get("DISCORD_URL")
if discord_url:
payload = {
"content": f"New model submitted: {model_name}"
}
response = requests.post(discord_url, json=payload)
if response.status_code == 204:
return "Model submitted successfully!"
else:
return "Failed to submit the model."
else:
return "Discord webhook URL not configured."
def generate_leaderboard(collection):
rows = list(collection.find())
leaderboard_data = pd.DataFrame(rows, columns=['bot_name', 'elo_rating', 'games_played'])
leaderboard_data['original_model'] = leaderboard_data['bot_name'].apply(lambda x: next(entry['original_model'] for entry in chatbots_data if entry['adapter'] == x))
leaderboard_data = leaderboard_data[['original_model', 'elo_rating', 'games_played']]
leaderboard_data.columns = ['Chatbot', 'ELO Score', 'Games Played']
leaderboard_data['ELO Score'] = leaderboard_data['ELO Score'].round().astype(int)
leaderboard_data = leaderboard_data.sort_values('ELO Score', ascending=False)
return leaderboard_data
def refresh_leaderboard():
collection = init_database()
leaderboard_data = generate_leaderboard(collection)
return leaderboard_data
async def direct_chat(model, user_input, state, chatbot, character_name, character_description, user_name):
adapter = next(entry['adapter'] for entry in chatbots_data if entry['original_model'] == model)
if "direct_history" not in state:
state["direct_history"] = []
if len(state["direct_history"])>20:
state["direct_history"] = state["direct_history"][-20:]
state["direct_history"].append({"role": "user", "content": user_input})
temp_state = {
"history": [
state["direct_history"],
state["direct_history"]
]
}
response = await get_bot_response(adapter, user_input, temp_state, 0, character_name, character_description, user_name)
chatbot.append((user_input, response))
state["direct_history"].append({"role": "bot", "content": response})
return "", chatbot, state
def reset_direct_chat(state):
state["direct_history"] = []
return [], gr.Textbox.update(value=''), state
refresh_leaderboard()
# Gradio interface setup
# Gradio interface setup
with gr.Blocks() as demo:
state = gr.State({})
with gr.Tab("π€ Chatbot Arena"):
gr.Markdown("## π₯ Let's see which chatbot wins!")
with gr.Row():
with gr.Column():
chatbot1 = gr.Chatbot(label='π€ Model A').style(height=350)
upvote_btn_a = gr.Button(value="π Upvote A", interactive=False).style(full_width=True)
with gr.Column():
chatbot2 = gr.Chatbot(label='π€ Model B').style(height=350)
upvote_btn_b = gr.Button(value="π Upvote B", interactive=False).style(full_width=True)
with gr.Row():
with gr.Column(scale=5):
textbox = gr.Textbox(placeholder="π€ Enter your prompt (up to 500 characters)")
submit_btn = gr.Button(value="Submit")
with gr.Row():
reset_btn = gr.Button(value="ποΈ Reset")
with gr.Row():
character_name = gr.Textbox(label="Character Name", value="Assistant", placeholder="Enter character name (max 20 chars)")
character_description = gr.Textbox(label="Character Description", value="The following is a conversation with an AI Large Language Model. The AI has been trained to answer questions, provide recommendations, and help with decision making. The AI follows user requests. The AI thinks outside the box.")
with gr.Row():
user_name = gr.Textbox(label="Your Name", value="You", placeholder="Enter your name (max 20 chars)")
# ...
reset_btn.click(clear_chat, inputs=[state], outputs=[state, chatbot1, chatbot2, upvote_btn_a, upvote_btn_b, textbox, submit_btn])
submit_btn.click(user_ask, inputs=[state, chatbot1, chatbot2, textbox, character_name, character_description, user_name], outputs=[state, chatbot1, chatbot2, textbox, upvote_btn_a, upvote_btn_b], queue=True)
textbox.submit(user_ask, inputs=[state, chatbot1, chatbot2, textbox, character_name, character_description, user_name], outputs=[state, chatbot1, chatbot2, textbox, upvote_btn_a, upvote_btn_b], queue=True)
collection = init_database()
upvote_btn_a.click(vote_up_model, inputs=[state, chatbot1, chatbot2], outputs=[chatbot1, chatbot2, upvote_btn_a, upvote_btn_b, textbox, submit_btn])
upvote_btn_b.click(vote_down_model, inputs=[state, chatbot1, chatbot2], outputs=[chatbot1, chatbot2, upvote_btn_a, upvote_btn_b, textbox, submit_btn])
with gr.Tab("π¬ Direct Chat"):
gr.Markdown("## π£οΈ Chat directly with a model!")
with gr.Row():
model_dropdown = gr.Dropdown(choices=[entry['original_model'] for entry in chatbots_data], value=chatbots_data[0]['original_model'], label="π€ Select a model")
with gr.Row():
direct_chatbot = gr.Chatbot(label="π¬ Direct Chat").style(height=500)
with gr.Row():
with gr.Column(scale=5):
direct_textbox = gr.Textbox(placeholder="π Enter your message")
direct_submit_btn = gr.Button(value="Submit")
with gr.Row():
direct_regenerate_btn = gr.Button(value="π Regenerate")
direct_reset_btn = gr.Button(value="ποΈ Reset Chat")
# ...
direct_regenerate_btn.click(direct_regenerate, inputs=[model_dropdown, direct_textbox, direct_chatbot, character_name, character_description, user_name], outputs=[direct_textbox, direct_chatbot])
direct_textbox.submit(direct_chat, inputs=[model_dropdown, direct_textbox, state, direct_chatbot, character_name, character_description, user_name], outputs=[direct_textbox, direct_chatbot, state])
direct_submit_btn.click(direct_chat, inputs=[model_dropdown, direct_textbox, state, direct_chatbot, character_name, character_description, user_name], outputs=[direct_textbox, direct_chatbot, state])
direct_reset_btn.click(reset_direct_chat, inputs=[state], outputs=[direct_chatbot, direct_textbox, state])
with gr.Tab("π Leaderboard"):
gr.Markdown("## π Check out the top-performing models!")
try:
leaderboard = gr.Dataframe(refresh_leaderboard())
except:
leaderboard = gr.Dataframe()
with gr.Row():
refresh_btn = gr.Button("π Refresh Leaderboard")
refresh_btn.click(refresh_leaderboard, outputs=[leaderboard])
with gr.Tab("π¨ Submit Model"):
gr.Markdown("## π¨ Submit a new model to be added to the chatbot arena!")
with gr.Row():
model_name_input = gr.Textbox(placeholder="Enter the model name")
submit_model_btn = gr.Button(value="Submit Model")
submit_model_btn.click(submit_model, inputs=[model_name_input], outputs=[model_name_input])
# Launch the Gradio interface
if __name__ == "__main__":
demo.launch(share=False)
|