from functools import partial import numpy as np class ABGamut: RESOURCE_POINTS = "./utils/gamut_pts.npy" RESOURCE_PRIOR = "./utils/gamut_probs.npy" DTYPE = np.float32 EXPECTED_SIZE = 313 def __init__(self): self.points = np.load(self.RESOURCE_POINTS).astype(self.DTYPE) self.prior = np.load(self.RESOURCE_PRIOR).astype(self.DTYPE) assert self.points.shape == (self.EXPECTED_SIZE, 2) assert self.prior.shape == (self.EXPECTED_SIZE,) class CIELAB: L_MEAN = 50 AB_BINSIZE = 10 AB_RANGE = [-110 - AB_BINSIZE // 2, 110 + AB_BINSIZE // 2, AB_BINSIZE] AB_DTYPE = np.float32 Q_DTYPE = np.int64 RGB_RESOLUTION = 101 RGB_RANGE = [0, 1, RGB_RESOLUTION] RGB_DTYPE = np.float64 def __init__(self, gamut=None): self.gamut = gamut if gamut is not None else ABGamut() a, b, self.ab = self._get_ab() self.ab_gamut_mask = self._get_ab_gamut_mask( a, b, self.ab, self.gamut) self.ab_to_q = self._get_ab_to_q(self.ab_gamut_mask) self.q_to_ab = self._get_q_to_ab(self.ab, self.ab_gamut_mask) @classmethod def _get_ab(cls): a = np.arange(*cls.AB_RANGE, dtype=cls.AB_DTYPE) b = np.arange(*cls.AB_RANGE, dtype=cls.AB_DTYPE) b_, a_ = np.meshgrid(a, b) ab = np.dstack((a_, b_)) return a, b, ab @classmethod def _get_ab_gamut_mask(cls, a, b, ab, gamut): ab_gamut_mask = np.full(ab.shape[:-1], False, dtype=bool) a = np.digitize(gamut.points[:, 0], a) - 1 b = np.digitize(gamut.points[:, 1], b) - 1 for a_, b_ in zip(a, b): ab_gamut_mask[a_, b_] = True return ab_gamut_mask @classmethod def _get_ab_to_q(cls, ab_gamut_mask): ab_to_q = np.full(ab_gamut_mask.shape, -1, dtype=cls.Q_DTYPE) ab_to_q[ab_gamut_mask] = np.arange(np.count_nonzero(ab_gamut_mask)) return ab_to_q @classmethod def _get_q_to_ab(cls, ab, ab_gamut_mask): return ab[ab_gamut_mask] + cls.AB_BINSIZE / 2 def bin_ab(self, ab): ab_discrete = ((ab + 110) / self.AB_RANGE[2]).astype(int) a, b = np.hsplit(ab_discrete.reshape(-1, 2), 2) return self.ab_to_q[a, b].reshape(*ab.shape[:2])