# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Various positional encodings for the transformer. """ import math import torch from torch import nn class PositionEmbeddingSine(nn.Module): """ This is a more standard version of the position embedding, very similar to the one used by the Attention is all you need paper, generalized to work on images. """ def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None): super().__init__() self.num_pos_feats = num_pos_feats self.temperature = temperature self.normalize = normalize if scale is not None and normalize is False: raise ValueError("normalize should be True if scale is passed") if scale is None: scale = 2 * math.pi self.scale = scale def forward(self, token_tensors): ## input: (B,C,H,W) x = token_tensors h, w = x.shape[-2:] identity_map= torch.ones((h,w), device=x.device) y_embed = identity_map.cumsum(0, dtype=torch.float32) x_embed = identity_map.cumsum(1, dtype=torch.float32) if self.normalize: eps = 1e-6 y_embed = y_embed / (y_embed[-1:, :] + eps) * self.scale x_embed = x_embed / (x_embed[:, -1:] + eps) * self.scale dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) pos_x = x_embed[:, :, None] / dim_t pos_y = y_embed[:, :, None] / dim_t pos_x = torch.stack((pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()), dim=3).flatten(2) pos_y = torch.stack((pos_y[:, :, 0::2].sin(), pos_y[:, :, 1::2].cos()), dim=3).flatten(2) pos = torch.cat((pos_y, pos_x), dim=2).permute(2, 0, 1) batch_pos = pos.unsqueeze(0).repeat(x.shape[0], 1, 1, 1) return batch_pos class PositionEmbeddingLearned(nn.Module): """ Absolute pos embedding, learned. """ def __init__(self, n_pos_x=16, n_pos_y=16, num_pos_feats=64): super().__init__() self.row_embed = nn.Embedding(n_pos_y, num_pos_feats) self.col_embed = nn.Embedding(n_pos_x, num_pos_feats) self.reset_parameters() def reset_parameters(self): nn.init.uniform_(self.row_embed.weight) nn.init.uniform_(self.col_embed.weight) def forward(self, token_tensors): ## input: (B,C,H,W) x = token_tensors h, w = x.shape[-2:] i = torch.arange(w, device=x.device) j = torch.arange(h, device=x.device) x_emb = self.col_embed(i) y_emb = self.row_embed(j) pos = torch.cat([ x_emb.unsqueeze(0).repeat(h, 1, 1), y_emb.unsqueeze(1).repeat(1, w, 1), ], dim=-1).permute(2, 0, 1) batch_pos = pos.unsqueeze(0).repeat(x.shape[0], 1, 1, 1) return batch_pos def build_position_encoding(num_pos_feats=64, n_pos_x=16, n_pos_y=16, is_learned=False): if is_learned: position_embedding = PositionEmbeddingLearned(n_pos_x, n_pos_y, num_pos_feats) else: position_embedding = PositionEmbeddingSine(num_pos_feats, normalize=True) return position_embedding