''' Tools for Manipulating and Converting 3D Rotations By Omid Alemi Created: June 12, 2017 Adapted from that matlab file... ''' import math import numpy as np import transforms3d as t3d from analysis.pymo.Quaternions import Quaternions def deg2rad(x): return x/180*math.pi def rad2deg(x): return x/math.pi*180 def unroll(rots): return unroll_1(rots) def unroll_1(rots): new_rots = rots.copy() # Compute angles and alternative rotation angles angs = np.linalg.norm(rots, axis=1) alt_angs=2*np.pi-angs #find discontinuities d_angs = np.diff(angs, axis=0) d_angs2 = alt_angs[1:]-angs[:-1] # swps = np.where(np.abs(d_angs2)i', rots[:-1,:], rots[1:,:]) #ax = rots/np.tile(angs[:, None], (1,3)) #d_ax = np.linalg.norm(np.diff(ax, axis=0), axis=1) alt_angs=2*np.pi-angs #find discontinuities d_angs = np.diff(angs, axis=0) d_angs2 = alt_angs[1:]-angs[:-1] # FIXME should check if dot product is <0 not norm d_ax swps = np.where((dotprod<-1))[0] #swps = np.where((np.abs(d_ax)>0.5))[0] #swps = np.where(np.abs(d_angs2) 1.0e-10: vector = rot / theta else: vector = np.array([1.,0.,0.]) theta=0.0 eul = t3d.euler.axangle2euler(vector, theta, 'r' + order.lower()) if use_deg: return np.rad2deg(eul) else: return eul class Rotation(): def __init__(self,rot, param_type, **params): self.rotmat = [] if param_type == 'euler': self._from_euler(rot[0],rot[1],rot[2], params) elif param_type == 'expmap': self._from_expmap(rot[0], rot[1], rot[2], params) def _from_euler(self, alpha, beta, gamma, params): '''Expecting degress''' if params['from_deg']==True: alpha = deg2rad(alpha) beta = deg2rad(beta) gamma = deg2rad(gamma) order = "s" + ((params['order']).lower())[::-1] # Quaternions.from_euler() self.rotmat = np.transpose(t3d.euler.euler2mat(gamma, beta , alpha, axes=order)) # ca = math.cos(alpha) # cb = math.cos(beta) # cg = math.cos(gamma) # sa = math.sin(alpha) # sb = math.sin(beta) # sg = math.sin(gamma) # # Rx = np.asarray([[1, 0, 0], # [0, ca, sa], # [0, -sa, ca] # ]) # # Ry = np.asarray([[cb, 0, -sb], # [0, 1, 0], # [sb, 0, cb]]) # # Rz = np.asarray([[cg, sg, 0], # [-sg, cg, 0], # [0, 0, 1]]) # # self.rotmat = np.eye(3) # # order = params['order'] # for i in range(0,len(order)): # if order[i]=='X': # self.rotmat = np.matmul(Rx, self.rotmat) # elif order[i]=='Y': # self.rotmat = np.matmul(Ry, self.rotmat) # elif order[i]=='Z': # self.rotmat = np.matmul(Rz, self.rotmat) # else: # print('unknown rotation axis: ' + order[i]) # # # self.rotmat = np.matmul(np.matmul(Rz, Ry), Rx) # print ("------" + "TRUE") # print (self.rotmat) def _from_expmap(self, alpha, beta, gamma, params): if (alpha == 0 and beta == 0 and gamma == 0): self.rotmat = np.eye(3) return #TODO: Check exp map params theta = np.linalg.norm([alpha, beta, gamma]) expmap = [alpha, beta, gamma] / theta x = expmap[0] y = expmap[1] z = expmap[2] s = math.sin(theta/2) c = math.cos(theta/2) self.rotmat = np.asarray([ [2*(x**2-1)*s**2+1, 2*x*y*s**2-2*z*c*s, 2*x*z*s**2+2*y*c*s], [2*x*y*s**2+2*z*c*s, 2*(y**2-1)*s**2+1, 2*y*z*s**2-2*x*c*s], [2*x*z*s**2-2*y*c*s, 2*y*z*s**2+2*x*c*s , 2*(z**2-1)*s**2+1] ]) def get_euler_axis(self): R = self.rotmat theta = math.acos((self.rotmat.trace() - 1) / 2) axis = np.asarray([R[2,1] - R[1,2], R[0,2] - R[2,0], R[1,0] - R[0,1]]) axis = axis/(2*math.sin(theta)) return theta, axis def to_expmap(self): axis, theta = t3d.axangles.mat2axangle(self.rotmat, unit_thresh=1e-05) # theta, axis = self.get_euler_axis() rot_arr = theta * axis if np.isnan(rot_arr).any(): rot_arr = [0, 0, 0] return rot_arr def to_euler(self, use_deg=False, order='xyz'): order = "s" + order.lower() eulers = t3d.euler.mat2euler(np.transpose(self.rotmat), axes=order) return eulers[::-1] # eulers = np.zeros((2, 3)) # # if np.absolute(np.absolute(self.rotmat[2, 0]) - 1) < 1e-12: # #GIMBAL LOCK! # print('Gimbal') # if np.absolute(self.rotmat[2, 0]) - 1 < 1e-12: # eulers[:,0] = math.atan2(-self.rotmat[0,1], -self.rotmat[0,2]) # eulers[:,1] = -math.pi/2 # else: # eulers[:,0] = math.atan2(self.rotmat[0,1], -elf.rotmat[0,2]) # eulers[:,1] = math.pi/2 # # return eulers # # theta = - math.asin(self.rotmat[2,0]) # theta2 = math.pi - theta # # # psi1, psi2 # eulers[0,0] = math.atan2(self.rotmat[2,1]/math.cos(theta), self.rotmat[2,2]/math.cos(theta)) # eulers[1,0] = math.atan2(self.rotmat[2,1]/math.cos(theta2), self.rotmat[2,2]/math.cos(theta2)) # # # theta1, theta2 # eulers[0,1] = theta # eulers[1,1] = theta2 # # # phi1, phi2 # eulers[0,2] = math.atan2(self.rotmat[1,0]/math.cos(theta), self.rotmat[0,0]/math.cos(theta)) # eulers[1,2] = math.atan2(self.rotmat[1,0]/math.cos(theta2), self.rotmat[0,0]/math.cos(theta2)) # if use_deg: eulers = rad2deg(eulers) return eulers def to_quat(self): #TODO pass def __str__(self): return "Rotation Matrix: \n " + self.rotmat.__str__()