import numpy as np import matplotlib.pyplot as plt seq_id = "gMH_sFM_cAll_d24_mMH5_ch20" music_file = "data/aistpp_20hz/"+seq_id+".mp3" ddc_file = "data/aistpp_ddcpca/"+seq_id+".ddcpca.npy" ddc_features = np.load(ddc_file) import IPython.display as ipd ipd.Audio(music_file) # load a local WAV file import feature_extraction.madmom as madmom from feature_extraction.madmom.audio.cepstrogram import MFCC proc_dwn = madmom.features.RNNDownBeatProcessor() beats = proc_dwn(music_file, fps=20) %matplotlib inline plt.matshow(beats[:200].T) ddc_features.shape beats.shape plt.matshow(ddc_features[:200].T) %matplotlib plt.plot(ddc_features[:100,0]) plt.plot(beats[:100,0]) tgt_fps = 20 filtbank = madmom.audio.filters.MelFilterbank spec = madmom.audio.spectrogram.Spectrogram(music_file, fps=tgt_fps, filterbank=filtbank, num_channels = 1) # mfccs = MFCC(spec, filterbank=filtbank, num_bands=5) # chroma = madmom.audio.chroma.PitchClassProfile(spec, num_classes=6, num_channels=1) sectralflux = madmom.features.onsets.spectral_flux(spec) mfccs.shape sectralflux.shape