from PIL import Image import requests import gradio as gr from io import BytesIO from transformers import BlipProcessor, BlipForConditionalGeneration model_id = "Salesforce/blip-image-captioning-base" model = BlipForConditionalGeneration.from_pretrained(model_id) processor = BlipProcessor.from_pretrained(model_id) def decode_base64_image(image_string): base64_image = base64.b64decode(image_string) buffer = BytesIO(base64_image) return Image.open(buffer) def launch(input_b64): image = decode_base64_image(input_b64) #inputsData = data.pop("inputs", data) # decode base64 image to PIL inputs = processor(image, return_tensors="pt") out = model.generate(**inputs) return processor.decode(out[0], skip_special_tokens=True) iface = gr.Interface(launch, inputs=gr.inputs.Image(), outputs="text") iface.launch()