aleksasp commited on
Commit
7787aab
1 Parent(s): c66f235

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +113 -40
app.py CHANGED
@@ -1,63 +1,136 @@
 
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
3
 
 
 
 
4
  """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
 
25
 
26
- messages.append({"role": "user", "content": message})
27
 
28
- response = ""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
 
 
 
 
 
 
 
35
  top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
 
 
 
 
 
38
 
39
- response += token
40
- yield response
 
 
41
 
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
  additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
  gr.Slider(
 
 
 
 
 
 
 
 
52
  minimum=0.1,
 
 
 
 
 
 
 
53
  maximum=1.0,
54
- value=0.95,
55
  step=0.05,
56
- label="Top-p (nucleus sampling)",
57
  ),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
  ],
 
59
  )
60
 
 
 
 
 
61
 
62
  if __name__ == "__main__":
63
- demo.launch()
 
1
+ import os
2
+ from threading import Thread
3
+ from typing import Iterator
4
+
5
  import gradio as gr
6
+ import spaces
7
+ import torch
8
+ from transformers import AutoModelForCausalLM, GemmaTokenizerFast, TextIteratorStreamer
9
 
10
+ DESCRIPTION = """\
11
+ # Gemma 2 9B IT SimPO
12
+ Fine-tuned google/gemma-2-9b-it on princeton-nlp/gemma2-ultrafeedback-armorm with the SimPO objective.
13
  """
 
 
 
14
 
15
+ MAX_MAX_NEW_TOKENS = 2048
16
+ DEFAULT_MAX_NEW_TOKENS = 1024
17
+ MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
18
+
19
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
20
 
21
+ model_id = "princeton-nlp/gemma-2-9b-it-SimPO"
 
 
 
 
 
 
 
 
22
 
23
+ tokenizer = GemmaTokenizerFast.from_pretrained(model_id)
24
+ model = AutoModelForCausalLM.from_pretrained(
25
+ model_id,
26
+ device_map="auto",
27
+ torch_dtype=torch.bfloat16,
28
+ )
29
+ model.config.sliding_window = 4096
30
+ model.eval()
31
 
 
32
 
33
+ @spaces.GPU(duration=90)
34
+ def generate(
35
+ message: str,
36
+ chat_history: list[tuple[str, str]],
37
+ max_new_tokens: int = 1024,
38
+ temperature: float = 0.6,
39
+ top_p: float = 0.9,
40
+ top_k: int = 50,
41
+ repetition_penalty: float = 1.2,
42
+ ) -> Iterator[str]:
43
+ conversation = []
44
+ for user, assistant in chat_history:
45
+ conversation.extend(
46
+ [
47
+ {"role": "user", "content": user},
48
+ {"role": "assistant", "content": assistant},
49
+ ]
50
+ )
51
+ conversation.append({"role": "user", "content": message})
52
 
53
+ input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
54
+ if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
55
+ input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
56
+ gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
57
+ input_ids = input_ids.to(model.device)
58
+
59
+ streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
60
+ generate_kwargs = dict(
61
+ {"input_ids": input_ids},
62
+ streamer=streamer,
63
+ max_new_tokens=max_new_tokens,
64
+ do_sample=True,
65
  top_p=top_p,
66
+ top_k=top_k,
67
+ temperature=temperature,
68
+ num_beams=1,
69
+ repetition_penalty=repetition_penalty,
70
+ )
71
+ t = Thread(target=model.generate, kwargs=generate_kwargs)
72
+ t.start()
73
 
74
+ outputs = []
75
+ for text in streamer:
76
+ outputs.append(text)
77
+ yield "".join(outputs)
78
 
79
+
80
+ chat_interface = gr.ChatInterface(
81
+ fn=generate,
 
 
82
  additional_inputs=[
 
 
 
83
  gr.Slider(
84
+ label="Max new tokens",
85
+ minimum=1,
86
+ maximum=MAX_MAX_NEW_TOKENS,
87
+ step=1,
88
+ value=DEFAULT_MAX_NEW_TOKENS,
89
+ ),
90
+ gr.Slider(
91
+ label="Temperature",
92
  minimum=0.1,
93
+ maximum=4.0,
94
+ step=0.1,
95
+ value=0.6,
96
+ ),
97
+ gr.Slider(
98
+ label="Top-p (nucleus sampling)",
99
+ minimum=0.05,
100
  maximum=1.0,
 
101
  step=0.05,
102
+ value=0.9,
103
  ),
104
+ gr.Slider(
105
+ label="Top-k",
106
+ minimum=1,
107
+ maximum=1000,
108
+ step=1,
109
+ value=50,
110
+ ),
111
+ gr.Slider(
112
+ label="Repetition penalty",
113
+ minimum=1.0,
114
+ maximum=2.0,
115
+ step=0.05,
116
+ value=1.2,
117
+ ),
118
+ ],
119
+ stop_btn=None,
120
+ examples=[
121
+ ["Hello there! How are you doing?"],
122
+ ["Can you explain briefly to me what is the Python programming language?"],
123
+ ["Explain the plot of Cinderella in a sentence."],
124
+ ["How many hours does it take a man to eat a Helicopter?"],
125
+ ["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
126
  ],
127
+ cache_examples=False,
128
  )
129
 
130
+ with gr.Blocks(css="style.css", fill_height=True) as demo:
131
+ gr.Markdown(DESCRIPTION)
132
+ gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
133
+ chat_interface.render()
134
 
135
  if __name__ == "__main__":
136
+ demo.queue(max_size=20).launch()