Spaces:
Runtime error
Runtime error
# Adapted from https://github.com/MCG-NJU/EMA-VFI/blob/main/dataset.py | |
import cv2 | |
import os | |
import torch | |
import numpy as np | |
import random | |
from torch.utils.data import Dataset | |
from config import * | |
cv2.setNumThreads(1) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
class VimeoDataset(Dataset): | |
def __init__(self, dataset_name, path, batch_size=32, model="RIFE"): | |
self.batch_size = batch_size | |
self.dataset_name = dataset_name | |
self.model = model | |
self.h = 256 | |
self.w = 448 | |
self.data_root = path | |
self.image_root = os.path.join(self.data_root, 'sequences') | |
train_fn = os.path.join(self.data_root, 'tri_trainlist.txt') | |
test_fn = os.path.join(self.data_root, 'tri_testlist.txt') | |
with open(train_fn, 'r') as f: | |
self.trainlist = f.read().splitlines() | |
with open(test_fn, 'r') as f: | |
self.testlist = f.read().splitlines() | |
self.load_data() | |
def __len__(self): | |
return len(self.meta_data) | |
def load_data(self): | |
if self.dataset_name != 'test': | |
self.meta_data = self.trainlist | |
else: | |
self.meta_data = self.testlist | |
def aug(self, img0, gt, img1, h, w): | |
ih, iw, _ = img0.shape | |
x = np.random.randint(0, ih - h + 1) | |
y = np.random.randint(0, iw - w + 1) | |
img0 = img0[x:x+h, y:y+w, :] | |
img1 = img1[x:x+h, y:y+w, :] | |
gt = gt[x:x+h, y:y+w, :] | |
return img0, gt, img1 | |
def getimg(self, index): | |
imgpath = os.path.join(self.image_root, self.meta_data[index]) | |
imgpaths = [imgpath + '/im1.png', imgpath + '/im2.png', imgpath + '/im3.png'] | |
img0 = cv2.imread(imgpaths[0]) | |
gt = cv2.imread(imgpaths[1]) | |
img1 = cv2.imread(imgpaths[2]) | |
return img0, gt, img1 | |
def __getitem__(self, index): | |
img0, gt, img1 = self.getimg(index) | |
if 'train' in self.dataset_name: | |
img0, gt, img1 = self.aug(img0, gt, img1, 256, 256) | |
if random.uniform(0, 1) < 0.5: | |
img0 = img0[:, :, ::-1] | |
img1 = img1[:, :, ::-1] | |
gt = gt[:, :, ::-1] | |
if random.uniform(0, 1) < 0.5: | |
img1, img0 = img0, img1 | |
if random.uniform(0, 1) < 0.5: | |
img0 = img0[::-1] | |
img1 = img1[::-1] | |
gt = gt[::-1] | |
if random.uniform(0, 1) < 0.5: | |
img0 = img0[:, ::-1] | |
img1 = img1[:, ::-1] | |
gt = gt[:, ::-1] | |
p = random.uniform(0, 1) | |
if p < 0.25: | |
img0 = cv2.rotate(img0, cv2.ROTATE_90_CLOCKWISE) | |
gt = cv2.rotate(gt, cv2.ROTATE_90_CLOCKWISE) | |
img1 = cv2.rotate(img1, cv2.ROTATE_90_CLOCKWISE) | |
elif p < 0.5: | |
img0 = cv2.rotate(img0, cv2.ROTATE_180) | |
gt = cv2.rotate(gt, cv2.ROTATE_180) | |
img1 = cv2.rotate(img1, cv2.ROTATE_180) | |
elif p < 0.75: | |
img0 = cv2.rotate(img0, cv2.ROTATE_90_COUNTERCLOCKWISE) | |
gt = cv2.rotate(gt, cv2.ROTATE_90_COUNTERCLOCKWISE) | |
img1 = cv2.rotate(img1, cv2.ROTATE_90_COUNTERCLOCKWISE) | |
img0 = torch.from_numpy(img0.copy()).permute(2, 0, 1) | |
img1 = torch.from_numpy(img1.copy()).permute(2, 0, 1) | |
gt = torch.from_numpy(gt.copy()).permute(2, 0, 1) | |
return torch.cat((img0, img1, gt), 0) | |