# Adapted from https://github.com/universome/fvd-comparison/blob/master/our_fvd.py from typing import Tuple import scipy import numpy as np import torch def compute_fvd(feats_fake: np.ndarray, feats_real: np.ndarray) -> float: mu_gen, sigma_gen = compute_stats(feats_fake) mu_real, sigma_real = compute_stats(feats_real) m = np.square(mu_gen - mu_real).sum() s, _ = scipy.linalg.sqrtm(np.dot(sigma_gen, sigma_real), disp=False) # pylint: disable=no-member fid = np.real(m + np.trace(sigma_gen + sigma_real - s * 2)) return float(fid) def compute_stats(feats: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: mu = feats.mean(axis=0) # [d] sigma = np.cov(feats, rowvar=False) # [d, d] return mu, sigma @torch.no_grad() def compute_our_fvd(videos_fake: np.ndarray, videos_real: np.ndarray, device: str = "cuda") -> float: i3d_path = "checkpoints/auxiliary/i3d_torchscript.pt" i3d_kwargs = dict( rescale=False, resize=False, return_features=True ) # Return raw features before the softmax layer. with open(i3d_path, "rb") as f: i3d_model = torch.jit.load(f).eval().to(device) videos_fake = videos_fake.permute(0, 4, 1, 2, 3).to(device) videos_real = videos_real.permute(0, 4, 1, 2, 3).to(device) feats_fake = i3d_model(videos_fake, **i3d_kwargs).cpu().numpy() feats_real = i3d_model(videos_real, **i3d_kwargs).cpu().numpy() return compute_fvd(feats_fake, feats_real) def main(): # input shape: (b, f, h, w, c) videos_fake = torch.rand(10, 16, 224, 224, 3) videos_real = torch.rand(10, 16, 224, 224, 3) our_fvd_result = compute_our_fvd(videos_fake, videos_real) print(f"[FVD scores] Ours: {our_fvd_result}") if __name__ == "__main__": main()