import torch from expand import * from transformers import PreTrainedModel, PreTrainedTokenizer, PreTrainedTokenizerFast, BatchEncoding from dataclasses import dataclass import time type Tokenizer = PreTrainedTokenizer | PreTrainedTokenizerFast def find_next_tokens(model: PreTrainedModel, inputs: BatchEncoding, threshold: float) -> list[list[tuple[int, float]]]: input_ids = inputs["input_ids"] attention_mask = inputs["attention_mask"] print("Running inference") start_time = time.time() with torch.no_grad(): outputs = model(input_ids=input_ids, attention_mask=attention_mask) print(f"Inference done, took {time.time() - start_time} seconds") start_time = time.time() logits: torch.Tensor = outputs.logits[:, -1, :] log_probs: torch.Tensor = torch.log_softmax(logits, dim=-1) print(f"Log probs done, took {time.time() - start_time} seconds") start_time = time.time() result = [] print(f"Resulting tensor: {log_probs.shape}") for probs in log_probs: # Filter out low probability tokens for efficiency above_threshold = torch.where(probs > threshold) filtered_indices = above_threshold[0] filtered_probs = probs[filtered_indices] result.append([(idx.item(), prob.item()) for idx, prob in zip(filtered_indices, filtered_probs)]) print(f"Result done, took {time.time() - start_time} seconds") return result def prepare_inputs(contexts: list[list[int]], tokenizer: Tokenizer, device: torch.device) -> BatchEncoding: texts = [tokenizer.decode(context, skip_special_tokens=True) for context in contexts] return tokenizer(texts, return_tensors="pt", padding=True).to(device) @dataclass class LLMBatchExpander(BatchExpander): model: PreTrainedModel tokenizer: Tokenizer threshold: float chunk_size: int = 64 def expand(self, batch: Batch) -> BatchCandidates: start_time = time.time() all_results = [] # Split batch.items into chunks to avoid CUDA out of memory for i in range(0, len(batch.items), self.chunk_size): chunk_items = batch.items[i:i + self.chunk_size] print(f"Processing chunk {i//self.chunk_size + 1}/{(len(batch.items) + self.chunk_size - 1)//self.chunk_size} with {len(chunk_items)} items") # Process this chunk inputs = prepare_inputs([s.get_all_tokens() for s in chunk_items], self.tokenizer, self.model.device) chunk_next_tokens = find_next_tokens(self.model, inputs, self.threshold) # Create token candidates for this chunk for s, next_tokens in zip(chunk_items, chunk_next_tokens): expansions = [Expansion(token=token, cost=cost) for token, cost in next_tokens] all_results.append(TokenCandidates(series=s, expansions=expansions)) # Clear CUDA cache to free up memory if torch.cuda.is_available(): torch.cuda.empty_cache() print(f"Total batch size: {len(batch.items)}, processed in {(len(batch.items) + self.chunk_size - 1)//self.chunk_size} chunks") print(f"Token candidates done, took {time.time() - start_time} seconds") return BatchCandidates(items=all_results) def create_stopping_criterion_llm(tokenizer: Tokenizer) -> Callable[[Series, Expansion], bool]: def stopping_criterion(series: Series, expansion: Expansion) -> bool: d = default_completion_criterion(series, expansion) if d: return d token_str = tokenizer.decode([expansion.token]) starts_with_space = token_str.startswith(" ") # print(f"-----{token_str}-----, {starts_with_space=}") is_first_token = len(series.expansions) == 0 if is_first_token and not starts_with_space: return True if not is_first_token and starts_with_space: return True return False return stopping_criterion