# %% #|export from fastai.vision.all import * import gradio as gr def is_bird(x): return x[0].isupper() # %% im = PILImage.create('dog.jpeg') im.thumbnail((192,192)) im # %% ##temp = pathlib.PosixPath #pathlib.PosixPath = pathlib.WindowsPath # %% #|export learn = load_learner('birdclassifiermodel.pkl') # %% learn.predict(im) # %% #|export categories = ('bird','not a bird') def classify_image(img): pred,idx,probs = learn.predict(img) return dict(zip(categories, map(float,probs))) # %% classify_image(im) # %% #|export image = gr.inputs.Image(shape =(192,192)) label = gr.outputs.Label() examples = ['dog.jpeg','bird1.jpg', 'bird2.jpg', 'forest1.jpg', 'forest2.jpg'] intf = gr.Interface(fn =classify_image, inputs=image, outputs=label, examples = examples) intf.launch(inline=False) # %% # %% [markdown] #