# -*- coding: utf-8 -*- """app.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1WeNkl1pYnT0qeOTsUFooLFLJ1arRHC00 """ # %pip install ultralytics -q # %pip install gradio -q import cv2 import os import PIL.Image as Image import gradio as gr from huggingface_hub import hf_hub_download from ultralytics import ASSETS, YOLO # load trained model model = YOLO("best.pt") def predict_image(img, conf_threshold, iou_threshold): results = model.predict( source=img, conf=conf_threshold, iou=iou_threshold, show_labels=True, show_conf=True, imgsz=640, ) for r in results: im_array = r.plot() im = Image.fromarray(im_array[..., ::-1]) return im iface = gr.Interface( fn=predict_image, inputs=[ gr.Image(type="pil", label="Upload Image"), gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"), gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold") ], outputs=gr.Image(type="pil", label="Result"), title="Fire Detecttion using YOLOv8n on Gradio", description="Upload images for inference. The Ultralytics YOLOv8n trained model is used for inference.", examples=[ [ASSETS / "bus.jpg", 0.25, 0.45], [ASSETS / "zidane.jpg", 0.25, 0.45], ] ) if __name__ == '__main__': iface.launch()