from preprocess import load_datasets, DatasetArguments from predict import ClassifierArguments, SPONSOR_MATCH_RE, DEFAULT_TOKEN_PREFIX from shared import device, GeneralArguments, OutputArguments from model import ModelArguments import transformers from model import get_model, get_tokenizer import logging import os import sys from dataclasses import dataclass, field from typing import Optional import datasets import pickle from transformers import ( DataCollatorForSeq2Seq, HfArgumentParser, Seq2SeqTrainer, Seq2SeqTrainingArguments ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version from sklearn.linear_model import LogisticRegression from sklearn.feature_extraction.text import TfidfVectorizer import re # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.13.0.dev0') require_version('datasets>=1.8.0', 'To fix: pip install -r requirements.txt') os.environ['WANDB_DISABLED'] = 'true' logger = logging.getLogger(__name__) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[logging.StreamHandler(sys.stdout)], ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ preprocessing_num_workers: Optional[int] = field( default=None, metadata={'help': 'The number of processes to use for the preprocessing.'}, ) # https://github.com/huggingface/transformers/issues/5204 max_source_length: Optional[int] = field( default=512, metadata={ 'help': 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' }, ) max_target_length: Optional[int] = field( default=512, metadata={ 'help': 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' }, ) val_max_target_length: Optional[int] = field( default=None, metadata={ 'help': 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`.' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' }, ) pad_to_max_length: bool = field( default=False, metadata={ 'help': 'Whether to pad all samples to model maximum sentence length. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch. More ' 'efficient on GPU but very bad for TPU.' }, ) max_train_samples: Optional[int] = field( default=None, metadata={ 'help': 'For debugging purposes or quicker training, truncate the number of training examples to this value if set.' }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ 'help': 'For debugging purposes or quicker training, truncate the number of evaluation examples to this value if set.' }, ) max_predict_samples: Optional[int] = field( default=None, metadata={ 'help': 'For debugging purposes or quicker training, truncate the number of prediction examples to this value if set.' }, ) num_beams: Optional[int] = field( default=None, metadata={ 'help': 'Number of beams to use for evaluation. This argument will be passed to ``model.generate``, ' 'which is used during ``evaluate`` and ``predict``.' }, ) ignore_pad_token_for_loss: bool = field( default=True, metadata={ 'help': 'Whether to ignore the tokens corresponding to padded labels in the loss computation or not.' }, ) source_prefix: Optional[str] = field( default=DEFAULT_TOKEN_PREFIX, metadata={ 'help': 'A prefix to add before every source text (useful for T5 models).'} ) # TODO add vectorizer params def __post_init__(self): if self.val_max_target_length is None: self.val_max_target_length = self.max_target_length @dataclass class SequenceTrainingArguments(OutputArguments, Seq2SeqTrainingArguments): seed: Optional[int] = GeneralArguments.__dataclass_fields__['seed'] num_train_epochs: float = field( default=1, metadata={'help': 'Total number of training epochs to perform.'}) save_steps: int = field(default=2500, metadata={ 'help': 'Save checkpoint every X updates steps.'}) eval_steps: int = field(default=2500, metadata={ 'help': 'Run an evaluation every X steps.'}) logging_steps: int = field(default=2500, metadata={ 'help': 'Log every X updates steps.'}) skip_train_transformer: bool = field(default=False, metadata={ 'help': 'Whether to skip training the transformer.'}) train_classifier: bool = field(default=False, metadata={ 'help': 'Whether to run training on the 2nd phase (classifier).'}) # do_eval: bool = field(default=False, metadata={ # 'help': 'Whether to run eval on the dev set.'}) do_predict: bool = field(default=False, metadata={ 'help': 'Whether to run predictions on the test set.'}) per_device_train_batch_size: int = field( default=4, metadata={'help': 'Batch size per GPU/TPU core/CPU for training.'} ) per_device_eval_batch_size: int = field( default=4, metadata={'help': 'Batch size per GPU/TPU core/CPU for evaluation.'} ) # report_to: Optional[List[str]] = field( # default=None, metadata={"help": "The list of integrations to report the results and logs to."} # ) evaluation_strategy: str = field( default='steps', metadata={ 'help': 'The evaluation strategy to use.', 'choices': ['no', 'steps', 'epoch'] }, ) # evaluation_strategy (:obj:`str` or :class:`~transformers.trainer_utils.IntervalStrategy`, `optional`, defaults to :obj:`"no"`): # The evaluation strategy to adopt during training. Possible values are: # * :obj:`"no"`: No evaluation is done during training. # * :obj:`"steps"`: Evaluation is done (and logged) every :obj:`eval_steps`. # * :obj:`"epoch"`: Evaluation is done at the end of each epoch. def main(): # reset() # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. hf_parser = HfArgumentParser(( ModelArguments, DatasetArguments, DataTrainingArguments, SequenceTrainingArguments, ClassifierArguments )) model_args, dataset_args, data_training_args, training_args, classifier_args = hf_parser.parse_args_into_dataclasses() log_level = training_args.get_process_log_level() logger.setLevel(log_level) datasets.utils.logging.set_verbosity(log_level) transformers.utils.logging.set_verbosity(log_level) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set seed before initializing model. # set_seed(training_args.seed) # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}' ) logger.info(f'Training/evaluation parameters {training_args}') # FP16 https://github.com/huggingface/transformers/issues/9295 # Works: # https://huggingface.co/docs/transformers/model_doc/t5v1.1 # google/t5-v1_1-small # google/t5-v1_1-base # google/t5-v1_1-large # google/t5-v1_1-xl # google/t5-v1_1-xxl # https://huggingface.co/docs/transformers/model_doc/t5 # t5-small # t5-base # t5-large # t5-3b # t5-11b # allenai/led-base-16384 - https://github.com/huggingface/transformers/issues/9810 # Further work: # Multilingual- https://huggingface.co/docs/transformers/model_doc/mt5 # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. if training_args.skip_train_transformer and not training_args.train_classifier: print('Nothing to do. Exiting') return raw_datasets = load_datasets(dataset_args) # , cache_dir=model_args.cache_dir # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. if training_args.train_classifier: print('Train classifier') # 1. Vectorize raw data to pass into classifier # CountVectorizer TfidfVectorizer # TfidfVectorizer - better (comb of CountVectorizer) vectorizer = TfidfVectorizer( # CountVectorizer # lowercase=False, # stop_words='english', # TODO optimise stop words? # stop_words=stop_words, ngram_range=(1, 2), # best so far # max_features=8000 # remove for higher accuracy? max_features=50000 # max_features=10000 ) train_test_data = { 'train': { 'X': [], 'y': [] }, 'test': { 'X': [], 'y': [] } } print('Splitting') for ds_type in train_test_data: dataset = raw_datasets[ds_type] for row in dataset: # Get matches: if row['sponsor']: matches = re.findall(SPONSOR_MATCH_RE, row['extracted']) else: matches = [row['text']] for match in matches: train_test_data[ds_type]['X'].append(match) train_test_data[ds_type]['y'].append(row['sponsor']) print('Fitting') _X_train = vectorizer.fit_transform(train_test_data['train']['X']) _X_test = vectorizer.transform(train_test_data['test']['X']) y_train = train_test_data['train']['y'] y_test = train_test_data['test']['y'] # 2. Create classifier classifier = LogisticRegression(max_iter=500) # 3. Fit data print('fit classifier') classifier.fit(_X_train, y_train) # 4. Measure accuracy accuracy = classifier.score(_X_test, y_test) print(f'[LogisticRegression] Accuracy percent:', round(accuracy*100, 3)) # 5. Save classifier and vectorizer with open(os.path.join(classifier_args.classifier_dir, classifier_args.classifier_file), 'wb') as fp: pickle.dump(classifier, fp) with open(os.path.join(classifier_args.classifier_dir, classifier_args.vectorizer_file), 'wb') as fp: pickle.dump(vectorizer, fp) if not training_args.skip_train_transformer: if data_training_args.source_prefix is None and 't5-' in model_args.model_name_or_path: logger.warning( "You're running a t5 model but didn't provide a source prefix, which is the expected, e.g. with `--source_prefix 'summarize: ' `" ) # Detecting last checkpoint. last_checkpoint = None if os.path.isdir(training_args.output_dir) and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Load pretrained model and tokenizer tokenizer = get_tokenizer(model_args) model = get_model(model_args) model.to(device()) model.resize_token_embeddings(len(tokenizer)) if model.config.decoder_start_token_id is None: raise ValueError( 'Make sure that `config.decoder_start_token_id` is correctly defined') if hasattr(model.config, 'max_position_embeddings') and model.config.max_position_embeddings < data_training_args.max_source_length: if model_args.resize_position_embeddings is None: logger.warning( f"Increasing the model's number of position embedding vectors from {model.config.max_position_embeddings} to {data_training_args.max_source_length}." ) model.resize_position_embeddings( data_training_args.max_source_length) elif model_args.resize_position_embeddings: model.resize_position_embeddings( data_training_args.max_source_length) else: raise ValueError( f'`--max_source_length` is set to {data_training_args.max_source_length}, but the model only has {model.config.max_position_embeddings}' f' position encodings. Consider either reducing `--max_source_length` to {model.config.max_position_embeddings} or to automatically ' "resize the model's position encodings by passing `--resize_position_embeddings`." ) # Preprocessing the datasets. # We need to tokenize inputs and targets. column_names = raw_datasets['train'].column_names # Temporarily set max_target_length for training. max_target_length = data_training_args.max_target_length padding = 'max_length' if data_training_args.pad_to_max_length else False if training_args.label_smoothing_factor > 0 and not hasattr(model, 'prepare_decoder_input_ids_from_labels'): logger.warning( 'label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for' f'`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory' ) prefix = data_training_args.source_prefix if data_training_args.source_prefix is not None else '' # https://github.com/huggingface/transformers/issues/5204 def preprocess_function(examples): inputs = examples['text'] targets = examples['extracted'] inputs = [prefix + inp for inp in inputs] model_inputs = tokenizer( inputs, max_length=data_training_args.max_source_length, padding=padding, truncation=True) # Setup the tokenizer for targets with tokenizer.as_target_tokenizer(): labels = tokenizer( targets, max_length=max_target_length, padding=padding, truncation=True) # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore # padding in the loss. if padding == 'max_length' and data_training_args.ignore_pad_token_for_loss: labels['input_ids'] = [ [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels['input_ids'] ] model_inputs['labels'] = labels['input_ids'] return model_inputs def prepare_dataset(dataset, desc): return dataset.map( preprocess_function, batched=True, num_proc=data_training_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not dataset_args.overwrite_cache, desc=desc, # tokenizing train dataset ) # train_dataset # TODO shuffle? # if training_args.do_train: if 'train' not in raw_datasets: # TODO do checks above? raise ValueError('Train dataset missing') train_dataset = raw_datasets['train'] if data_training_args.max_train_samples is not None: train_dataset = train_dataset.select( range(data_training_args.max_train_samples)) with training_args.main_process_first(desc='train dataset map pre-processing'): train_dataset = prepare_dataset( train_dataset, desc='Running tokenizer on train dataset') max_target_length = data_training_args.val_max_target_length if 'validation' not in raw_datasets: raise ValueError('Validation dataset missing') eval_dataset = raw_datasets['validation'] if data_training_args.max_eval_samples is not None: eval_dataset = eval_dataset.select( range(data_training_args.max_eval_samples)) with training_args.main_process_first(desc='validation dataset map pre-processing'): eval_dataset = prepare_dataset( eval_dataset, desc='Running tokenizer on validation dataset') if 'test' not in raw_datasets: raise ValueError('Test dataset missing') predict_dataset = raw_datasets['test'] if data_training_args.max_predict_samples is not None: predict_dataset = predict_dataset.select( range(data_training_args.max_predict_samples)) with training_args.main_process_first(desc='prediction dataset map pre-processing'): predict_dataset = prepare_dataset( predict_dataset, desc='Running tokenizer on prediction dataset') # Data collator label_pad_token_id = - \ 100 if data_training_args.ignore_pad_token_for_loss else tokenizer.pad_token_id data_collator = DataCollatorForSeq2Seq( tokenizer, model=model, label_pad_token_id=label_pad_token_id, pad_to_multiple_of=8 if training_args.fp16 else None, ) # Done processing datasets # Initialize our Trainer trainer = Seq2SeqTrainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, tokenizer=tokenizer, data_collator=data_collator, ) # Training checkpoint = None if training_args.resume_from_checkpoint is not None: checkpoint = training_args.resume_from_checkpoint elif last_checkpoint is not None: checkpoint = last_checkpoint try: train_result = trainer.train(resume_from_checkpoint=checkpoint) trainer.save_model() # Saves the tokenizer too for easy upload except KeyboardInterrupt: print('Saving model') trainer.save_model(os.path.join( training_args.output_dir, 'checkpoint-latest')) # TODO use dir raise metrics = train_result.metrics max_train_samples = data_training_args.max_train_samples or len( train_dataset) metrics['train_samples'] = min(max_train_samples, len(train_dataset)) trainer.log_metrics('train', metrics) trainer.save_metrics('train', metrics) trainer.save_state() kwargs = {'finetuned_from': model_args.model_name_or_path, 'tasks': 'summarization'} if training_args.push_to_hub: trainer.push_to_hub(**kwargs) else: trainer.create_model_card(**kwargs) if __name__ == '__main__': main()