""" Support Vector Classifier setup. Features: - Uses `SVC` from scikit-learn. - Handles binary classification naturally, and multi-class via OvR by default. - Default scoring: 'accuracy'. Considerations: - `C` and `kernel` are key parameters. - If `kernel='rbf'`, also tune `gamma`. """ from sklearn.svm import SVC estimator = SVC(random_state=42) param_grid = { 'model__C': [0.1, 1.0], # Reduced the range 'model__kernel': ['linear'], # Focused on linear kernel 'model__gamma': ['scale'], # Fixed the gamma to one option # Preprocessing params #'preprocessor__num__imputer__strategy': ['mean'], #'preprocessor__num__scaler__with_mean': [True], #'preprocessor__num__scaler__with_std': [True], } default_scoring = 'accuracy'