""" MLP Classifier setup. Features: - Uses `MLPClassifier`. - Suitable for binary and multi-class classification. - Default scoring: 'accuracy'. Considerations: - `hidden_layer_sizes`, `alpha` (L2 regularization), and `learning_rate_init` are common parameters. - Increase `max_iter` if convergence warnings appear. """ from sklearn.neural_network import MLPClassifier # Define the estimator estimator = MLPClassifier(max_iter=200, random_state=42) # Define the hyperparameter grid param_grid = { 'model__hidden_layer_sizes': [(50,)], # Reduced size of hidden layers for faster training 'model__alpha': [0.001], # Retained commonly effective value 'model__learning_rate_init': [0.001], # Focused on a single typical value for faster tuning # Uncomment and customize preprocessing params if needed #'preprocessor__num__imputer__strategy': ['mean'], #'preprocessor__num__scaler__with_mean': [True], #'preprocessor__num__scaler__with_std': [True], } default_scoring = 'accuracy'