""" CatBoost Classifier setup. Features: - Uses `CatBoostClassifier`. - Handles categorical features natively but we still rely on pipeline encoding. - Good for both binary and multi-class. - Default scoring: 'accuracy'. Requires `catboost` installed. """ from catboost import CatBoostClassifier estimator = CatBoostClassifier(verbose=0, random_state=42) param_grid = { 'model__iterations': [100], 'model__depth': [3, 5], 'model__learning_rate': [0.01, 0.1], # Preprocessing params #'preprocessor__num__imputer__strategy': ['mean','median'], #'preprocessor__num__scaler__with_mean': [True,False], #'preprocessor__num__scaler__with_std': [True,False], } default_scoring = 'accuracy'