""" AdaBoost Classifier setup. Features: - Uses `AdaBoostClassifier` wrapping a weak learner (by default DecisionTreeClassifier). - Suitable for binary and multi-class tasks (OvR approach). - Default scoring: 'accuracy'. """ from sklearn.ensemble import AdaBoostClassifier estimator = AdaBoostClassifier(random_state=42) param_grid = { 'model__n_estimators': [100], 'model__learning_rate': [0.5, 1.0], 'model__algorithm': ['SAMME'], # Preprocessing params #'preprocessor__num__imputer__strategy': ['mean','median'], #'preprocessor__num__scaler__with_mean': [True,False], #'preprocessor__num__scaler__with_std': [True,False], } default_scoring = 'accuracy'