# credits : https://huggingface.co/spaces/black-forest-labs/FLUX.1-dev import os import gradio as gr import numpy as np import random import spaces import torch from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images hf_token = os.getenv("HF_TOKEN") dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device) pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device) torch.cuda.empty_cache() MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) @spaces.GPU(duration=75) def infer(name, pet, background, style, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): if pet == "Kaatz": intro = "please generate an image of a cat sitting " elif pet == "Mupp": intro = "please generate an image of a dog sitting " elif pet == "Hues": intro = "please generate an image of a bunny sitting " else: intro = "please generate an image of an hamster sitting " if background == "Wunnzëmmer": place = intro + "in a living space " elif background == "Grafitti Mauer": place = intro + "in front of a wall with graffiti " elif background == "Strooss": place = intro + "in a street in the city " elif background == "Plage": place = intro + "at the beach " else: place = intro + " in the forest " if style == "Photo": prompt = place + "holding a signal that says " + name + "in a photorealistic style" elif style == "Cartoon": prompt = place + "holding a signal that says " + name + "in a cartoon style" elif style == "Woll": prompt = place + "holding a signal that says " + name + "in a knitted with wool style" elif style == "Aquarell": prompt = place + "holding a signal that says " + name + "in a watercolorl style" else: prompt = place + "holding a signal that says " + name + "in a 3D style" seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( prompt=prompt, guidance_scale=4, num_inference_steps=28, width=1024, height=1024, generator=generator, output_type="pil", good_vae=good_vae, ): yield img, seed examples = [ "a tiny astronaut hatching from an egg on the moon", "a cat holding a sign that says hello world", "an anime illustration of a wiener schnitzel", ] css=""" #col-container { margin: 0 auto; max-width: 640px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f"""# Mäin éischt KI-Bild Mol mer e Bild mat mengem Hausdéier a mengem Numm op engem Schëld ! """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Schreif däin Text mat dengem Numm", container=False, ) run_button = gr.Button("Run", scale=0) with gr.Row(): pet = gr.Radio( choices=["Kaatz", "Mupp", "Hues", "Hamster"], label="Hausdéier", value="Kaatz" ) with gr.Row(): background = gr.Radio( choices=["Wunnzëmmer", "Grafitti Mauer", "Strooss", "Plage", "Bësch"], label="Hannergrond", value="Strooss" ) with gr.Row(): style = gr.Radio( choices=["Photo", "Cartoon", "Woll", "Aquarell", "3D"], label="Style", value="Photo" ) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=28, ) gr.Examples( examples = examples, fn = infer, inputs = [prompt], outputs = [result, seed], cache_examples="lazy" ) gr.on( triggers=[run_button.click, prompt.submit], fn = infer, inputs = [prompt, pet, background, style], outputs = [result, seed] ) demo.launch()