Spaces:
Sleeping
Sleeping
""" | |
Copyright (c) Microsoft Corporation. | |
Licensed under the MIT license. | |
distributed API using Horovod | |
Modified from OpenNMT's native pytorch distributed utils | |
(https://github.com/OpenNMT/OpenNMT-py) | |
""" | |
import math | |
import pickle | |
import torch | |
import torch.distributed as dist | |
from time import time | |
from torch.autograd import Function | |
from torch.utils.data.distributed import DistributedSampler | |
class ddp_allgather_with_grads(Function): | |
def forward(ctx, x): | |
tmp_input = x.cuda() | |
size = torch.tensor(tmp_input.shape[0]).cuda() | |
size_list = [torch.zeros_like(size) for i in range(dist.get_world_size())] | |
dist.all_gather(size_list, size) | |
max_size = max(size_list).item() | |
padding_size = max_size - size | |
if padding_size > 0 : | |
padding_tensor = torch.zeros(padding_size,*tmp_input.shape[1:]).to(tmp_input) | |
tmp_input = torch.cat((tmp_input, padding_tensor), dim = 0) | |
tmp_list = [torch.zeros_like(tmp_input) for i in range(dist.get_world_size())] | |
dist.all_gather(tmp_list, tmp_input) | |
ctx.size = size_list | |
output = [] | |
for t, s in zip(tmp_list, size_list): | |
output.append(t[:s]) | |
output = torch.cat(output,dim=0) | |
output.requires_grad = True | |
return output | |
def backward(ctx, grad_output): | |
grad_x = None | |
if grad_output is not None: | |
grad_output.detach() | |
#grad_x = grad_output.chunk(dist.get_world_size(),dim=0)[dist.get_rank()] | |
start = sum(ctx.size[:dist.get_rank()]) | |
end = start + ctx.size[dist.get_rank()] | |
grad_x = grad_output[start:end] | |
return grad_x | |
def ddp_allgather(input): | |
tmp_input = input.cuda() | |
size = torch.tensor(tmp_input.shape[0]).cuda() | |
size_list = [torch.zeros_like(size) for i in range(dist.get_world_size())] | |
dist.all_gather(size_list, size) | |
max_size = max(size_list).item() | |
padding_size = max_size - size | |
if padding_size > 0 : | |
padding_tensor = torch.zeros(padding_size,*tmp_input.shape[1:]).to(tmp_input) | |
tmp_input = torch.cat((tmp_input, padding_tensor), dim = 0) | |
tmp_list = [torch.zeros_like(tmp_input) for i in range(dist.get_world_size())] | |
dist.all_gather(tmp_list, tmp_input) | |
output = [] | |
for t, s in zip(tmp_list, size_list): | |
output.append(t[:s]) | |
output = torch.cat(output,dim=0) | |
return output | |
def _encode(enc, max_size, use_max_size=False): | |
enc_size = len(enc) | |
enc_byte = max(math.floor(math.log(max_size, 256)+1), 1) | |
if use_max_size: | |
# this is used for broadcasting | |
buffer_ = torch.cuda.ByteTensor(max_size+enc_byte) | |
else: | |
buffer_ = torch.cuda.ByteTensor(enc_size+enc_byte) | |
remainder = enc_size | |
for i in range(enc_byte): | |
base = 256 ** (enc_byte-i-1) | |
buffer_[i] = remainder // base | |
remainder %= base | |
buffer_[enc_byte:enc_byte+enc_size] = torch.ByteTensor(list(enc)) | |
return buffer_, enc_byte | |
def _decode(buffer_, enc_byte): | |
size = sum(256 ** (enc_byte-i-1) * buffer_[i].item() | |
for i in range(enc_byte)) | |
bytes_list = bytes(buffer_[enc_byte:enc_byte+size].tolist()) | |
shift = size + enc_byte | |
return bytes_list, shift | |
_BUFFER_SIZE = 4096 | |
def all_gather_list(data): | |
"""Gathers arbitrary data from all nodes into a list.""" | |
enc = pickle.dumps(data) | |
enc_size = len(enc) | |
max_size = ddp_allgather(torch.tensor([enc_size]).cuda()).max().item() | |
in_buffer, enc_byte = _encode(enc, max_size) | |
out_buffer = ddp_allgather(in_buffer[:enc_byte+enc_size]) | |
results = [] | |
for _ in range(dist.get_world_size()): | |
bytes_list, shift = _decode(out_buffer, enc_byte) | |
out_buffer = out_buffer[shift:] | |
result = pickle.loads(bytes_list) | |
results.append(result) | |
return results | |
def any_broadcast(data, root_rank): | |
"""broadcast arbitrary data from root_rank to all nodes.""" | |
enc = pickle.dumps(data) | |
max_size = ddp_allgather(torch.tensor([len(enc)]).cuda()).max().item() | |
buffer_, enc_byte = _encode(enc, max_size, use_max_size=True) | |
dist.broadcast(buffer_, root_rank) | |
bytes_list, _ = _decode(buffer_, enc_byte) | |
result = pickle.loads(bytes_list) | |
return result | |
class DistributedSampler_wopadding(DistributedSampler): | |
def __iter__(self): | |
if self.shuffle: | |
# deterministically shuffle based on epoch and seed | |
g = torch.Generator() | |
g.manual_seed(self.seed + self.epoch) | |
indices = torch.randperm(len(self.dataset), generator=g).tolist() # type: ignore[arg-type] | |
else: | |
indices = list(range(len(self.dataset))) # type: ignore[arg-type] | |
if self.drop_last: | |
indices = indices[:self.total_size] | |
#assert len(indices) == self.total_size | |
# subsample | |
indices = indices[self.rank:len(indices):self.num_replicas] | |
# assert len(indices) == self.num_samples | |
return iter(indices) | |
class GatherLayer(torch.autograd.Function): | |
""" | |
Gather tensors from all workers with support for backward propagation: | |
This implementation does not cut the gradients as torch.distributed.all_gather does. | |
""" | |
def forward(ctx, x): | |
output = [ | |
torch.zeros_like(x) for _ in range(torch.distributed.get_world_size()) | |
] | |
torch.distributed.all_gather(output, x) | |
return tuple(output) | |
def backward(ctx, *grads): | |
all_gradients = torch.stack(grads) | |
torch.distributed.all_reduce(all_gradients) | |
return all_gradients[torch.distributed.get_rank()] | |
def all_gather_with_grad(tensors): | |
""" | |
Performs all_gather operation on the provided tensors. | |
Graph remains connected for backward grad computation. | |
""" | |
# Queue the gathered tensors | |
world_size = torch.distributed.get_world_size() | |
# There is no need for reduction in the single-proc case | |
if world_size == 1: | |
return tensors | |
# tensor_all = GatherLayer.apply(tensors) | |
tensor_all = GatherLayer.apply(tensors) | |
return torch.cat(tensor_all, dim=0) |