File size: 19,404 Bytes
2d9a728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
import torch.nn as nn
import torch

import tools.utils as utils
import agent.dreamer_utils as common
from collections import OrderedDict
import numpy as np

from tools.genrl_utils import *

def stop_gradient(x):
  return x.detach()

Module = nn.Module 

def env_reward(agent, seq):
  return agent.wm.heads['reward'](seq['feat']).mean

class DreamerAgent(Module):

  def __init__(self, 
                name, cfg, obs_space, act_spec, **kwargs):
    super().__init__()
    self.name = name
    self.cfg = cfg
    self.cfg.update(**kwargs)
    self.obs_space = obs_space
    self.act_spec = act_spec
    self._use_amp = (cfg.precision == 16)
    self.device = cfg.device
    self.act_dim = act_spec.shape[0]
    self.wm = WorldModel(cfg, obs_space, self.act_dim,)
    self.instantiate_acting_behavior()

    self.to(cfg.device)
    self.requires_grad_(requires_grad=False)

  def instantiate_acting_behavior(self,):
    self._acting_behavior = ActorCritic(self.cfg, self.act_spec, self.wm.inp_size).to(self.device)
    
  def act(self, obs, meta, step, eval_mode, state):
    if self.cfg.only_random_actions:
      return np.random.uniform(-1, 1, self.act_dim,).astype(self.act_spec.dtype), (None, None)
    obs = {k : torch.as_tensor(np.copy(v), device=self.device).unsqueeze(0) for k, v in obs.items()}
    if state is None:
      latent = self.wm.rssm.initial(len(obs['reward']))
      action = torch.zeros((len(obs['reward']),) + self.act_spec.shape, device=self.device)
    else:
      latent, action = state
    embed = self.wm.encoder(self.wm.preprocess(obs))
    should_sample = (not eval_mode) or (not self.cfg.eval_state_mean)
    latent, _ = self.wm.rssm.obs_step(latent, action, embed, obs['is_first'], should_sample)
    feat = self.wm.rssm.get_feat(latent)
    if eval_mode:
      actor = self._acting_behavior.actor(feat)
      try:
        action = actor.mean 
      except:
        action = actor._mean
    else:
      actor = self._acting_behavior.actor(feat)
      action = actor.sample()
    new_state = (latent, action)
    return action.cpu().numpy()[0], new_state

  def update_wm(self, data, step):
    metrics = {}
    state, outputs, mets = self.wm.update(data, state=None)
    outputs['is_terminal'] = data['is_terminal']
    metrics.update(mets)
    return state, outputs, metrics

  def update_acting_behavior(self, state=None, outputs=None, metrics={}, data=None, reward_fn=None):
    if self.cfg.only_random_actions:
      return {}, metrics
    if outputs is not None:
      post = outputs['post']
      is_terminal = outputs['is_terminal']
    else:
      data = self.wm.preprocess(data)
      embed = self.wm.encoder(data)
      post, _ = self.wm.rssm.observe(
          embed, data['action'], data['is_first'])
      is_terminal = data['is_terminal']
    #
    start = {k: stop_gradient(v) for k,v in post.items()}
    if reward_fn is None:
      acting_reward_fn = lambda seq: globals()[self.cfg.acting_reward_fn](self, seq) #.mode()
    else:
      acting_reward_fn = lambda seq: reward_fn(self, seq) #.mode()
    metrics.update(self._acting_behavior.update(self.wm, start, is_terminal, acting_reward_fn))
    return start, metrics

  def update(self, data, step):
    state, outputs, metrics = self.update_wm(data, step)
    start, metrics = self.update_acting_behavior(state, outputs, metrics, data)
    return state, metrics

  def report(self, data):
    report = {}
    data = self.wm.preprocess(data)
    for key in self.wm.heads['decoder'].cnn_keys:
      name = key.replace('/', '_')
      report[f'openl_{name}'] = self.wm.video_pred(data, key)
    for fn in getattr(self.cfg, 'additional_report_fns', []):
      call_fn = globals()[fn]
      additional_report = call_fn(self, data)
      report.update(additional_report)
    return report

  def get_meta_specs(self):
    return tuple()

  def init_meta(self):
    return OrderedDict()

  def update_meta(self, meta, global_step, time_step, finetune=False):
    return meta

class WorldModel(Module):
  def __init__(self, config, obs_space, act_dim,):
    super().__init__()
    shapes = {k: tuple(v.shape) for k, v in obs_space.items()}
    self.shapes = shapes
    self.cfg = config
    self.device = config.device
    self.encoder = common.Encoder(shapes, **config.encoder)
    # Computing embed dim
    with torch.no_grad():
      zeros = {k: torch.zeros( (1,) + v) for k, v in shapes.items()}
      outs = self.encoder(zeros)
      embed_dim = outs.shape[1]
    self.embed_dim = embed_dim
    self.rssm = common.EnsembleRSSM(**config.rssm, action_dim=act_dim, embed_dim=embed_dim, device=self.device,)
    self.heads = {}
    self._use_amp = (config.precision == 16)
    self.inp_size = self.rssm.get_feat_size()
    self.decoder_input_fn = getattr(self.rssm, f'get_{config.decoder_inputs}')
    self.decoder_input_size = getattr(self.rssm, f'get_{config.decoder_inputs}_size')()
    self.heads['decoder'] = common.Decoder(shapes, **config.decoder, embed_dim=self.decoder_input_size, image_dist=config.image_dist)
    self.heads['reward'] = common.MLP(self.inp_size, (1,), **config.reward_head)
    # zero init
    with torch.no_grad():
      for p in self.heads['reward']._out.parameters():
        p.data = p.data * 0
    #
    if config.pred_discount:
      self.heads['discount'] = common.MLP(self.inp_size, (1,), **config.discount_head)
    for name in config.grad_heads:
      assert name in self.heads, name
    self.grad_heads = config.grad_heads
    self.heads = nn.ModuleDict(self.heads)
    self.model_opt = common.Optimizer('model', self.parameters(), **config.model_opt, use_amp=self._use_amp)
    self.e2e_update_fns = {}
    self.detached_update_fns = {}
    self.eval()

  def add_module_to_update(self, name, module, update_fn, detached=False):
    self.add_module(name, module)
    if detached:
      self.detached_update_fns[name] = update_fn
    else:
      self.e2e_update_fns[name] = update_fn
    self.model_opt = common.Optimizer('model', self.parameters(), **self.cfg.model_opt, use_amp=self._use_amp)

  def update(self, data, state=None):
    self.train()
    with common.RequiresGrad(self):
      with torch.cuda.amp.autocast(enabled=self._use_amp):
        if getattr(self.cfg, "freeze_decoder", False):
          self.heads['decoder'].requires_grad_(False)
        if getattr(self.cfg, "freeze_post", False) or getattr(self.cfg, "freeze_model", False):
          self.heads['decoder'].requires_grad_(False)
          self.encoder.requires_grad_(False)
          # Updating only prior
          self.grad_heads = []
          self.rssm.requires_grad_(False)
          if not getattr(self.cfg, "freeze_model", False):
            self.rssm._ensemble_img_out.requires_grad_(True)
            self.rssm._ensemble_img_dist.requires_grad_(True)
        model_loss, state, outputs, metrics = self.loss(data, state)
        model_loss, metrics = self.update_additional_e2e_modules(data, outputs, model_loss, metrics)
      metrics.update(self.model_opt(model_loss, self.parameters())) 
    if len(self.detached_update_fns) > 0:
      detached_loss, metrics = self.update_additional_detached_modules(data, outputs, metrics)
    self.eval()
    return state, outputs, metrics

  def update_additional_detached_modules(self, data, outputs, metrics):
    # additional detached losses
    detached_loss = 0
    for k in self.detached_update_fns:
      detached_module = getattr(self, k)
      with common.RequiresGrad(detached_module):
        with torch.cuda.amp.autocast(enabled=self._use_amp):
          add_loss, add_metrics = self.detached_update_fns[k](self, k, data, outputs, metrics)
          metrics.update(add_metrics)
          opt_metrics = self.model_opt(add_loss, detached_module.parameters())
          metrics.update({ f'{k}_{m}' : opt_metrics[m] for m in opt_metrics})
    return detached_loss, metrics

  def update_additional_e2e_modules(self, data, outputs, model_loss, metrics):
    # additional e2e losses
    for k in self.e2e_update_fns:
      add_loss, add_metrics = self.e2e_update_fns[k](self, k, data, outputs, metrics)
      model_loss += add_loss
      metrics.update(add_metrics)
    return model_loss, metrics

  def observe_data(self, data, state=None):
    data = self.preprocess(data)
    embed = self.encoder(data)
    post, prior = self.rssm.observe(
        embed, data['action'], data['is_first'], state)
    kl_loss, kl_value = self.rssm.kl_loss(post, prior, **self.cfg.kl)
    outs = dict(embed=embed, post=post, prior=prior, is_terminal=data['is_terminal'])
    return outs, { 'model_kl' : kl_value.mean() }

  def loss(self, data, state=None):
    data = self.preprocess(data)
    embed = self.encoder(data)
    post, prior = self.rssm.observe(
        embed, data['action'], data['is_first'], state)
    kl_loss, kl_value = self.rssm.kl_loss(post, prior, **self.cfg.kl)
    assert len(kl_loss.shape) == 0 or (len(kl_loss.shape) == 1 and kl_loss.shape[0] == 1), kl_loss.shape
    likes = {}
    losses = {'kl': kl_loss}
    feat = self.rssm.get_feat(post)
    for name, head in self.heads.items():
      grad_head = (name in self.grad_heads)
      if name == 'decoder':
        inp = self.decoder_input_fn(post)
      else:
        inp = feat
      inp = inp if grad_head else stop_gradient(inp)
      out = head(inp)
      dists = out if isinstance(out, dict) else {name: out}
      for key, dist in dists.items():
        like = dist.log_prob(data[key]) 
        likes[key] = like
        losses[key] = -like.mean()
    model_loss = sum(
        self.cfg.loss_scales.get(k, 1.0) * v for k, v in losses.items())
    outs = dict(
        embed=embed, feat=feat, post=post,
        prior=prior, likes=likes, kl=kl_value)
    metrics = {f'{name}_loss': value for name, value in losses.items()}
    metrics['model_kl'] = kl_value.mean()
    metrics['prior_ent'] = self.rssm.get_dist(prior).entropy().mean()
    metrics['post_ent'] = self.rssm.get_dist(post).entropy().mean()
    last_state = {k: v[:, -1] for k, v in post.items()}
    return model_loss, last_state, outs, metrics

  def imagine(self, policy, start, is_terminal, horizon, task_cond=None, eval_policy=False):
    flatten = lambda x: x.reshape([-1] + list(x.shape[2:]))
    start = {k: flatten(v) for k, v in start.items()}
    start['feat'] = self.rssm.get_feat(start)
    inp = start['feat'] if task_cond is None else torch.cat([start['feat'], task_cond], dim=-1)
    policy_dist = policy(inp)
    start['action'] = torch.zeros_like(policy_dist.sample(), device=self.device) #.mode())
    seq = {k: [v] for k, v in start.items()}
    if task_cond is not None: seq['task'] = [task_cond]
    for _ in range(horizon):
      inp = seq['feat'][-1] if task_cond is None else torch.cat([seq['feat'][-1], task_cond], dim=-1)
      policy_dist = policy(stop_gradient(inp))
      action = policy_dist.sample() if not eval_policy else policy_dist.mean
      state = self.rssm.img_step({k: v[-1] for k, v in seq.items()}, action)
      feat = self.rssm.get_feat(state)
      for key, value in {**state, 'action': action, 'feat': feat}.items():
        seq[key].append(value)
      if task_cond is not None: seq['task'].append(task_cond)
    # shape will be (T, B, *DIMS)
    seq = {k: torch.stack(v, 0) for k, v in seq.items()}
    if 'discount' in self.heads:
      disc = self.heads['discount'](seq['feat']).mean()
      if is_terminal is not None:
        # Override discount prediction for the first step with the true
        # discount factor from the replay buffer.
        true_first = 1.0 - flatten(is_terminal) 
        disc = torch.cat([true_first[None], disc[1:]], 0)
    else:
      disc = torch.ones(list(seq['feat'].shape[:-1]) + [1], device=self.device)
    seq['discount'] = disc * self.cfg.discount
    # Shift discount factors because they imply whether the following state
    # will be valid, not whether the current state is valid.
    seq['weight'] = torch.cumprod(torch.cat([torch.ones_like(disc[:1], device=self.device), disc[:-1]], 0), 0)
    return seq

  def preprocess(self, obs):
    obs = obs.copy()
    for key, value in obs.items():
      if key.startswith('log_'):
        continue
      if value.dtype in [np.uint8, torch.uint8]:
        value = value / 255.0 - 0.5 
      obs[key] = value
    obs['reward'] = {
        'identity': nn.Identity(),
        'sign': torch.sign,
        'tanh': torch.tanh,
    }[self.cfg.clip_rewards](obs['reward'])
    obs['discount'] = (1.0 - obs['is_terminal'].float())
    if len(obs['discount'].shape) < len(obs['reward'].shape):
      obs['discount'] = obs['discount'].unsqueeze(-1)
    return obs

  def video_pred(self, data, key, nvid=8):
    decoder = self.heads['decoder'] # B, T, C, H, W
    truth = data[key][:nvid] + 0.5
    embed = self.encoder(data)
    states, _ = self.rssm.observe(
        embed[:nvid, :5], data['action'][:nvid, :5], data['is_first'][:nvid, :5])
    recon = decoder(self.decoder_input_fn(states))[key].mean[:nvid] # mode
    init = {k: v[:, -1] for k, v in states.items()}
    prior = self.rssm.imagine(data['action'][:nvid, 5:], init)
    prior_recon = decoder(self.decoder_input_fn(prior))[key].mean # mode
    model = torch.clip(torch.cat([recon[:, :5] + 0.5, prior_recon + 0.5], 1), 0, 1)
    error = (model - truth + 1) / 2
    video = torch.cat([truth, model, error], 3)
    B, T, C, H, W = video.shape
    return video 

class ActorCritic(Module):
  def __init__(self, config, act_spec, feat_size, name=''):
    super().__init__()
    self.name = name
    self.cfg = config
    self.act_spec = act_spec
    self._use_amp = (config.precision == 16)
    self.device = config.device
    
    if getattr(self.cfg, 'discrete_actions', False):
      self.cfg.actor.dist = 'onehot'

    self.actor_grad = getattr(self.cfg, f'{self.name}_actor_grad'.strip('_'))
    
    inp_size = feat_size
    self.actor = common.MLP(inp_size, act_spec.shape[0], **self.cfg.actor)
    self.critic = common.MLP(inp_size, (1,), **self.cfg.critic)
    if self.cfg.slow_target:
      self._target_critic = common.MLP(inp_size, (1,), **self.cfg.critic)
      self._updates = 0 # tf.Variable(0, tf.int64)
    else:
      self._target_critic = self.critic
    self.actor_opt = common.Optimizer('actor', self.actor.parameters(), **self.cfg.actor_opt, use_amp=self._use_amp)
    self.critic_opt = common.Optimizer('critic', self.critic.parameters(), **self.cfg.critic_opt, use_amp=self._use_amp)
    
    if self.cfg.reward_ema:
        # register ema_vals to nn.Module for enabling torch.save and torch.load
        self.register_buffer("ema_vals", torch.zeros((2,)).to(self.device))
        self.reward_ema = common.RewardEMA(device=self.device)
        self.rewnorm = common.StreamNorm(momentum=1, scale=1.0, device=self.device)
    else:
        self.rewnorm = common.StreamNorm(**self.cfg.reward_norm, device=self.device)

    # zero init
    with torch.no_grad():
      for p in self.critic._out.parameters():
        p.data = p.data * 0
    # hard copy critic initial params
    for s, d in zip(self.critic.parameters(), self._target_critic.parameters()):
      d.data = s.data
    #


  def update(self, world_model, start, is_terminal, reward_fn):
    metrics = {}
    hor = self.cfg.imag_horizon
    # The weights are is_terminal flags for the imagination start states.
    # Technically, they should multiply the losses from the second trajectory
    # step onwards, which is the first imagined step. However, we are not
    # training the action that led into the first step anyway, so we can use
    # them to scale the whole sequence.
    with common.RequiresGrad(self.actor):
      with torch.cuda.amp.autocast(enabled=self._use_amp):
        seq = world_model.imagine(self.actor, start, is_terminal, hor)
        reward = reward_fn(seq)
        seq['reward'], mets1 = self.rewnorm(reward)
        mets1 = {f'reward_{k}': v for k, v in mets1.items()}
        target, mets2, baseline = self.target(seq)
        actor_loss, mets3 = self.actor_loss(seq, target, baseline)
      metrics.update(self.actor_opt(actor_loss, self.actor.parameters()))
    with common.RequiresGrad(self.critic):
      with torch.cuda.amp.autocast(enabled=self._use_amp):
        seq = {k: stop_gradient(v) for k,v in seq.items()}
        critic_loss, mets4 = self.critic_loss(seq, target)
      metrics.update(self.critic_opt(critic_loss, self.critic.parameters()))
    metrics.update(**mets1, **mets2, **mets3, **mets4)
    self.update_slow_target()  # Variables exist after first forward pass.
    return { f'{self.name}_{k}'.strip('_') : v for k,v in metrics.items() }

  def actor_loss(self, seq, target, baseline): #, step):
    # Two state-actions are lost at the end of the trajectory, one for the boostrap
    # value prediction and one because the corresponding action does not lead
    # anywhere anymore. One target is lost at the start of the trajectory
    # because the initial state comes from the replay buffer.
    policy = self.actor(stop_gradient(seq['feat'][:-2])) # actions are the ones in [1:-1]

    metrics = {}
    if self.cfg.reward_ema:
      offset, scale = self.reward_ema(target, self.ema_vals)
      normed_target = (target - offset) / scale
      normed_baseline = (baseline - offset) / scale
      # adv = normed_target - normed_baseline
      metrics['normed_target_mean'] = normed_target.mean()
      metrics['normed_target_std'] = normed_target.std()
      metrics["reward_ema_005"] = self.ema_vals[0]
      metrics["reward_ema_095"] = self.ema_vals[1]
    else:
      normed_target = target
      normed_baseline = baseline
    
    if self.actor_grad == 'dynamics':
      objective = normed_target[1:]
    elif self.actor_grad == 'reinforce':
      advantage = normed_target[1:] - normed_baseline[1:]
      objective = policy.log_prob(stop_gradient(seq['action'][1:-1]))[:,:,None] * advantage
    else:
      raise NotImplementedError(self.actor_grad)
    
    ent = policy.entropy()[:,:,None]
    ent_scale = self.cfg.actor_ent
    objective += ent_scale * ent
    metrics['actor_ent'] = ent.mean()
    metrics['actor_ent_scale'] = ent_scale
    
    weight = stop_gradient(seq['weight'])
    actor_loss = -(weight[:-2] * objective).mean() 
    return actor_loss, metrics

  def critic_loss(self, seq, target):
    feat = seq['feat'][:-1]
    target = stop_gradient(target)
    weight = stop_gradient(seq['weight'])
    dist = self.critic(feat)
    critic_loss = -(dist.log_prob(target)[:,:,None] * weight[:-1]).mean()
    metrics = {'critic': dist.mean.mean() } 
    return critic_loss, metrics

  def target(self, seq):
    reward = seq['reward'] 
    disc = seq['discount'] 
    value = self._target_critic(seq['feat']).mean 
    # Skipping last time step because it is used for bootstrapping.
    target = common.lambda_return(
        reward[:-1], value[:-1], disc[:-1],
        bootstrap=value[-1],
        lambda_=self.cfg.discount_lambda,
        axis=0)
    metrics = {}
    metrics['critic_slow'] = value.mean()
    metrics['critic_target'] = target.mean()
    return target, metrics, value[:-1]

  def update_slow_target(self):
    if self.cfg.slow_target:
      if self._updates % self.cfg.slow_target_update == 0:
        mix = 1.0 if self._updates == 0 else float(
            self.cfg.slow_target_fraction)
        for s, d in zip(self.critic.parameters(), self._target_critic.parameters()):
          d.data = mix * s.data + (1 - mix) * d.data
      self._updates += 1