from huggingface_hub import hf_hub_download
Rain_Princess = hf_hub_download(repo_id="maze/FastStyleTransfer", filename="Rain_Princess.pth")
#modelarcanev3 = hf_hub_download(repo_id="akhaliq/ArcaneGANv0.3", filename="ArcaneGANv0.3.jit")
#modelarcanev2 = hf_hub_download(repo_id="akhaliq/ArcaneGANv0.2", filename="ArcaneGANv0.2.jit")
import numpy as np
from PIL import Image
import gradio as gr
import torch
import torch.nn as nn
import torchvision.transforms as transforms
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class TransformerNetwork(nn.Module):
def __init__(self, tanh_multiplier=None):
super(TransformerNetwork, self).__init__()
self.ConvBlock = nn.Sequential(
ConvLayer(3, 32, 9, 1),
nn.ReLU(),
ConvLayer(32, 64, 3, 2),
nn.ReLU(),
ConvLayer(64, 128, 3, 2),
nn.ReLU()
)
self.ResidualBlock = nn.Sequential(
ResidualLayer(128, 3),
ResidualLayer(128, 3),
ResidualLayer(128, 3),
ResidualLayer(128, 3),
ResidualLayer(128, 3)
)
self.DeconvBlock = nn.Sequential(
DeconvLayer(128, 64, 3, 2, 1),
nn.ReLU(),
DeconvLayer(64, 32, 3, 2, 1),
nn.ReLU(),
ConvLayer(32, 3, 9, 1, norm="None")
)
self.tanh_multiplier = tanh_multiplier
def forward(self, x):
x = self.ConvBlock(x)
x = self.ResidualBlock(x)
x = self.DeconvBlock(x)
if isinstance(self.tanh_multiplier, int):
x = self.tanh_multiplier * F.tanh(x)
return x
class ConvLayer(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, norm="instance"):
super(ConvLayer, self).__init__()
padding_size = kernel_size // 2
self.pad = nn.ReflectionPad2d(padding_size)
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride)
if norm == "instance":
self.norm = nn.InstanceNorm2d(out_channels, affine=True)
elif norm == "batch":
self.norm = nn.BatchNorm2d(out_channels, affine=True)
else:
self.norm = nn.Identity()
def forward(self, x):
x = self.pad(x)
x = self.conv(x)
x = self.norm(x)
return x
class ResidualLayer(nn.Module):
def __init__(self, channels=128, kernel_size=3):
super(ResidualLayer, self).__init__()
self.conv1 = ConvLayer(channels, channels, kernel_size, stride=1)
self.relu = nn.ReLU()
self.conv2 = ConvLayer(channels, channels, kernel_size, stride=1)
def forward(self, x):
identity = x
out = self.relu(self.conv1(x))
out = self.conv2(out)
out = out + identity
return out
class DeconvLayer(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, output_padding, norm="instance"):
super(DeconvLayer, self).__init__()
padding_size = kernel_size // 2
self.conv_transpose = nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride, padding_size, output_padding)
if norm == "instance":
self.norm = nn.InstanceNorm2d(out_channels, affine=True)
elif norm == "batch":
self.norm = nn.BatchNorm2d(out_channels, affine=True)
else:
self.norm = nn.Identity()
def forward(self, x):
x = self.conv_transpose(x)
out = self.norm(x)
return out
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
transformer = TransformerNetwork().to(device)
transformer.eval()
transform = transforms.Compose([
transforms.Resize(256),
transforms.ToTensor(),
transforms.Normalize(mean, std),
])
denormalize = transforms.Normalize(
mean= [-m/s for m, s in zip(mean, std)],
std= [1/s for s in std]
)
tensor2Image = transforms.ToPILImage()
@torch.no_grad()
def process(image, model):
image = transform(image).to(device)
image = image.unsqueeze(dim=0)
image = denormalize(model(image)).cpu()
image = torch.clamp(image.squeeze(dim=0), 0, 1)
image = tensor2Image(image)
return image
def main(image, backbone, style):
transformer.load_state_dict(torch.load(Rain_Princess))
image = Image.fromarray(image)
isize = image.size
image = process(image, transformer)
s = f"The output image ({str(image.size)}) is processed by {backbone} based on input image ({str(isize)}) .
Please rate the generated image through the Flag button below!"
return image, s
gr.Interface(
title = "Stylize",
description = "Image generated based on Fast Style Transfer",
fn = main,
inputs = [
gr.inputs.Image(),
gr.inputs.Radio(["VGG19", "Robust ResNet50", "Standard ResNet50"], label="Backbone"),
gr.inputs.Dropdown(["The Scream", "Rain Princess"], type="value", default="Rain Princess", label="style")
],
outputs = [gr.outputs.Image(label="Stylized"), gr.outputs.HTML(label="Comment")],
# examples = [
# []
# ],
# live = True, # the interface will recalculate as soon as the user input changes.
allow_flagging = "manual",
flagging_options = ["Excellect", "Moderate", "Bad"],
flagging_dir = "flagged",
allow_screenshot = False,
).launch()
# iface.launch(enable_queue=True, cache_examples=True, debug=True)