from flask import Flask, render_template, request import random import json from keras.models import load_model import numpy as np import pickle from nltk.stem import WordNetLemmatizer import nltk nltk.download('popular') lemmatizer = WordNetLemmatizer() model = load_model('model.h5') intents = json.loads(open('data.json').read()) words = pickle.load(open('texts.pkl', 'rb')) classes = pickle.load(open('labels.pkl', 'rb')) def clean_up_sentence(sentence): # tokenize the pattern - split words into array sentence_words = nltk.word_tokenize(sentence) # stem each word - create short form for word sentence_words = [lemmatizer.lemmatize( word.lower()) for word in sentence_words] return sentence_words # return bag of words array: 0 or 1 for each word in the bag that exists in the sentence def bow(sentence, words, show_details=True): # tokenize the pattern sentence_words = clean_up_sentence(sentence) # bag of words - matrix of N words, vocabulary matrix bag = [0]*len(words) for s in sentence_words: for i, w in enumerate(words): if w == s: # assign 1 if current word is in the vocabulary position bag[i] = 1 if show_details: print("found in bag: %s" % w) return (np.array(bag)) def predict_class(sentence, model): # filter out predictions below a threshold p = bow(sentence, words, show_details=False) res = model.predict(np.array([p]))[0] ERROR_THRESHOLD = 0.25 results = [[i, r] for i, r in enumerate(res) if r > ERROR_THRESHOLD] # sort by strength of probability results.sort(key=lambda x: x[1], reverse=True) return_list = [] for r in results: return_list.append({"intent": classes[r[0]], "probability": str(r[1])}) return return_list def getResponse(ints, intents_json): tag = ints[0]['intent'] list_of_intents = intents_json['intents'] for i in list_of_intents: if (i['tag'] == tag): result = random.choice(i['responses']) break return result def chatbot_response(msg): ints = predict_class(msg, model) res = getResponse(ints, intents) return res app = Flask(__name__) app.static_folder = 'static' @app.route("/") def home(): return render_template("index.html") @app.route("/get") def get_bot_response(): userText = request.args.get('msg') return chatbot_response(userText) # if __name__ == "__main__": # app.run()