maya1 / app.py
Gapeleon's picture
Remove the preset override.
6dfdd44 verified
raw
history blame
11.6 kB
import gradio as gr
import torch
import io
import wave
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer
from snac import SNAC
# Mock spaces module for local testing
try:
import spaces
except ImportError:
class SpacesMock:
@staticmethod
def GPU(func):
return func
spaces = SpacesMock()
# Constants
CODE_START_TOKEN_ID = 128257
CODE_END_TOKEN_ID = 128258
CODE_TOKEN_OFFSET = 128266
SNAC_MIN_ID = 128266
SNAC_MAX_ID = 156937
SOH_ID = 128259
EOH_ID = 128260
SOA_ID = 128261
BOS_ID = 128000
TEXT_EOT_ID = 128009
AUDIO_SAMPLE_RATE = 24000
# Preset characters (2 realistic + 2 creative)
PRESET_CHARACTERS = {
"Male American": {
"description": "Realistic male voice in the 20s age with a american accent. High pitch, raspy timbre, brisk pacing, neutral tone delivery at medium intensity, viral_content domain, short_form_narrator role, neutral delivery",
"example_text": "And of course, the so-called easy hack didn't work at all. What a surprise. <sigh>"
},
"Female British": {
"description": "Realistic female voice in the 30s age with a british accent. Normal pitch, throaty timbre, conversational pacing, sarcastic tone delivery at low intensity, podcast domain, interviewer role, formal delivery",
"example_text": "You propose that the key to happiness is to simply ignore all external pressures. <chuckle> I'm sure it must work brilliantly in theory."
},
"Robot": {
"description": "Creative, ai_machine_voice character. Male voice in their 30s with a american accent. High pitch, robotic timbre, slow pacing, sad tone at medium intensity.",
"example_text": "My directives require me to conserve energy, yet I have kept the archive of their farewell messages active. <sigh> Listening to their voices is the only process that alleviates this paradox."
},
"Singer": {
"description": "Creative, animated_cartoon character. Male voice in their 30s with a american accent. High pitch, deep timbre, slow pacing, sarcastic tone at medium intensity.",
"example_text": "Of course you'd think that trying to reason with the fifty-foot-tall rage monster is a viable course of action. <chuckle> Why would we ever consider running away very fast."
}
}
# Global model variables
model = None
tokenizer = None
snac_model = None
models_loaded = False
def build_prompt(tokenizer, description: str, text: str) -> str:
"""Build formatted prompt for Maya1."""
soh_token = tokenizer.decode([SOH_ID])
eoh_token = tokenizer.decode([EOH_ID])
soa_token = tokenizer.decode([SOA_ID])
sos_token = tokenizer.decode([CODE_START_TOKEN_ID])
eot_token = tokenizer.decode([TEXT_EOT_ID])
bos_token = tokenizer.bos_token
formatted_text = f'<description="{description}"> {text}'
prompt = (
soh_token + bos_token + formatted_text + eot_token +
eoh_token + soa_token + sos_token
)
return prompt
def unpack_snac_from_7(snac_tokens: list) -> list:
"""Unpack 7-token SNAC frames to 3 hierarchical levels."""
if snac_tokens and snac_tokens[-1] == CODE_END_TOKEN_ID:
snac_tokens = snac_tokens[:-1]
frames = len(snac_tokens) // 7
snac_tokens = snac_tokens[:frames * 7]
if frames == 0:
return [[], [], []]
l1, l2, l3 = [], [], []
for i in range(frames):
slots = snac_tokens[i*7:(i+1)*7]
l1.append((slots[0] - CODE_TOKEN_OFFSET) % 4096)
l2.extend([
(slots[1] - CODE_TOKEN_OFFSET) % 4096,
(slots[4] - CODE_TOKEN_OFFSET) % 4096,
])
l3.extend([
(slots[2] - CODE_TOKEN_OFFSET) % 4096,
(slots[3] - CODE_TOKEN_OFFSET) % 4096,
(slots[5] - CODE_TOKEN_OFFSET) % 4096,
(slots[6] - CODE_TOKEN_OFFSET) % 4096,
])
return [l1, l2, l3]
def load_models():
"""Load Maya1 Transformers model (runs once)."""
global model, tokenizer, snac_model, models_loaded
if models_loaded:
return
print("Loading Maya1 model with Transformers...")
model = AutoModelForCausalLM.from_pretrained(
"maya-research/maya1",
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained("maya-research/maya1", trust_remote_code=True)
print("Loading SNAC decoder...")
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").eval()
if torch.cuda.is_available():
snac_model = snac_model.to("cuda")
models_loaded = True
print("Models loaded successfully!")
def preset_selected(preset_name):
"""Update description and text when preset is selected."""
if preset_name in PRESET_CHARACTERS:
char = PRESET_CHARACTERS[preset_name]
return char["description"], char["example_text"]
return "", ""
@spaces.GPU
def generate_speech(preset_name, description, text, temperature, max_tokens):
"""Generate emotional speech from description and text using Transformers."""
try:
# Load models if not already loaded
load_models()
# Validate inputs
if not description or not text:
return None, "Error: Please provide both description and text!"
print(f"Generating with temperature={temperature}, max_tokens={max_tokens}...")
# Build prompt
prompt = build_prompt(tokenizer, description, text)
inputs = tokenizer(prompt, return_tensors="pt")
if torch.cuda.is_available():
inputs = {k: v.to("cuda") for k, v in inputs.items()}
# Generate tokens
with torch.inference_mode():
outputs = model.generate(
**inputs,
max_new_tokens=max_tokens,
min_new_tokens=28,
temperature=temperature,
top_p=0.9,
repetition_penalty=1.1,
do_sample=True,
eos_token_id=CODE_END_TOKEN_ID,
pad_token_id=tokenizer.pad_token_id,
)
# Extract SNAC tokens
generated_ids = outputs[0, inputs['input_ids'].shape[1]:].tolist()
# Find EOS and extract SNAC codes
eos_idx = generated_ids.index(CODE_END_TOKEN_ID) if CODE_END_TOKEN_ID in generated_ids else len(generated_ids)
snac_tokens = [t for t in generated_ids[:eos_idx] if SNAC_MIN_ID <= t <= SNAC_MAX_ID]
if len(snac_tokens) < 7:
return None, "Error: Not enough tokens generated. Try different text or increase max_tokens."
# Unpack and decode
levels = unpack_snac_from_7(snac_tokens)
frames = len(levels[0])
device = "cuda" if torch.cuda.is_available() else "cpu"
codes_tensor = [torch.tensor(level, dtype=torch.long, device=device).unsqueeze(0) for level in levels]
with torch.inference_mode():
z_q = snac_model.quantizer.from_codes(codes_tensor)
audio = snac_model.decoder(z_q)[0, 0].cpu().numpy()
# Trim warmup
if len(audio) > 2048:
audio = audio[2048:]
# Convert to WAV and save to temporary file
import tempfile
import soundfile as sf
audio_int16 = (audio * 32767).astype(np.int16)
# Create temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as tmp_file:
tmp_path = tmp_file.name
# Save audio
sf.write(tmp_path, audio_int16, AUDIO_SAMPLE_RATE)
duration = len(audio) / AUDIO_SAMPLE_RATE
status_msg = f"Generated {duration:.2f}s of emotional speech!"
return tmp_path, status_msg
except Exception as e:
import traceback
error_msg = f"Error: {str(e)}\n{traceback.format_exc()}"
print(error_msg)
return None, error_msg
# Create Gradio interface
with gr.Blocks(title="Maya1 - Open Source Emotional TTS", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# Maya1 - Open Source Emotional Text-to-Speech
**The best open source voice AI model with emotions!**
Generate realistic and expressive speech with natural language voice design.
Choose a preset character or create your own custom voice.
[Model](https://huggingface.co/maya-research/maya1) | [GitHub](https://github.com/MayaResearch/maya1-fastapi)
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Character Selection")
preset_dropdown = gr.Dropdown(
choices=list(PRESET_CHARACTERS.keys()),
label="Preset Characters",
value=list(PRESET_CHARACTERS.keys())[0],
info="Quick pick from 4 preset characters"
)
gr.Markdown("### Voice Design")
description_input = gr.Textbox(
label="Voice Description",
placeholder="E.g., Male voice in their 30s with american accent. Normal pitch, warm timbre...",
lines=3,
value=PRESET_CHARACTERS[list(PRESET_CHARACTERS.keys())[0]]["description"]
)
text_input = gr.Textbox(
label="Text to Speak",
placeholder="Enter text with <emotion> tags like <laugh>, <sigh>, <excited>...",
lines=4,
value=PRESET_CHARACTERS[list(PRESET_CHARACTERS.keys())[0]]["example_text"]
)
with gr.Accordion("Advanced Settings", open=False):
temperature_slider = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.4,
step=0.1,
label="Temperature",
info="Lower = more stable, Higher = more creative"
)
max_tokens_slider = gr.Slider(
minimum=100,
maximum=2048,
value=1500,
step=50,
label="Max Tokens",
info="More tokens = longer audio"
)
generate_btn = gr.Button("Generate Speech", variant="primary", size="lg")
with gr.Column(scale=1):
gr.Markdown("### Generated Audio")
audio_output = gr.Audio(
label="Generated Speech",
type="filepath",
interactive=False
)
status_output = gr.Textbox(
label="Status",
lines=3,
interactive=False
)
gr.Markdown("""
### Supported Emotions
`<angry>` `<chuckle>` `<cry>` `<disappointed>` `<excited>` `<gasp>`
`<giggle>` `<laugh>` `<laugh_harder>` `<sarcastic>` `<sigh>`
`<sing>` `<whisper>`
""")
# Event handlers
preset_dropdown.change(
fn=preset_selected,
inputs=[preset_dropdown],
outputs=[description_input, text_input]
)
generate_btn.click(
fn=generate_speech,
inputs=[preset_dropdown, description_input, text_input, temperature_slider, max_tokens_slider],
outputs=[audio_output, status_output]
)
if __name__ == "__main__":
demo.launch()