import os import numpy as np import random import torch import torch.utils.data from vits.utils import load_wav_to_torch def load_filepaths(filename, split="|"): with open(filename, encoding='utf-8') as f: filepaths = [line.strip().split(split) for line in f] return filepaths class TextAudioSpeakerSet(torch.utils.data.Dataset): def __init__(self, filename, hparams): self.items = load_filepaths(filename) self.max_wav_value = hparams.max_wav_value self.sampling_rate = hparams.sampling_rate self.segment_size = hparams.segment_size self.hop_length = hparams.hop_length self._filter() print(f'----------{len(self.items)}----------') def _filter(self): lengths = [] items_new = [] items_min = int(self.segment_size / self.hop_length * 4) # 1 S items_max = int(self.segment_size / self.hop_length * 16) # 4 S for wavpath, spec, pitch, vec, ppg, spk in self.items: if not os.path.isfile(wavpath): continue if not os.path.isfile(spec): continue if not os.path.isfile(pitch): continue if not os.path.isfile(vec): continue if not os.path.isfile(ppg): continue if not os.path.isfile(spk): continue temp = np.load(pitch) usel = int(temp.shape[0] - 1) # useful length if (usel < items_min): continue if (usel >= items_max): usel = items_max items_new.append([wavpath, spec, pitch, vec, ppg, spk, usel]) lengths.append(usel) self.items = items_new self.lengths = lengths def read_wav(self, filename): audio, sampling_rate = load_wav_to_torch(filename) assert sampling_rate == self.sampling_rate, f"error: this sample rate of {filename} is {sampling_rate}" audio_norm = audio / self.max_wav_value audio_norm = audio_norm.unsqueeze(0) return audio_norm def __getitem__(self, index): return self.my_getitem(index) def __len__(self): return len(self.items) def my_getitem(self, idx): item = self.items[idx] # print(item) wav = item[0] spe = item[1] pit = item[2] vec = item[3] ppg = item[4] spk = item[5] use = item[6] wav = self.read_wav(wav) spe = torch.load(spe) pit = np.load(pit) vec = np.load(vec) vec = np.repeat(vec, 2, 0) # 320 PPG -> 160 * 2 ppg = np.load(ppg) ppg = np.repeat(ppg, 2, 0) # 320 PPG -> 160 * 2 spk = np.load(spk) pit = torch.FloatTensor(pit) vec = torch.FloatTensor(vec) ppg = torch.FloatTensor(ppg) spk = torch.FloatTensor(spk) len_pit = pit.size()[0] len_vec = vec.size()[0] - 2 # for safe len_ppg = ppg.size()[0] - 2 # for safe len_min = min(len_pit, len_vec) len_min = min(len_min, len_ppg) len_wav = len_min * self.hop_length pit = pit[:len_min] vec = vec[:len_min, :] ppg = ppg[:len_min, :] spe = spe[:, :len_min] wav = wav[:, :len_wav] if len_min > use: max_frame_start = ppg.size(0) - use - 1 frame_start = random.randint(0, max_frame_start) frame_end = frame_start + use pit = pit[frame_start:frame_end] vec = vec[frame_start:frame_end, :] ppg = ppg[frame_start:frame_end, :] spe = spe[:, frame_start:frame_end] wav_start = frame_start * self.hop_length wav_end = frame_end * self.hop_length wav = wav[:, wav_start:wav_end] # print(spe.shape) # print(wav.shape) # print(ppg.shape) # print(pit.shape) # print(spk.shape) return spe, wav, ppg, vec, pit, spk class TextAudioSpeakerCollate: """Zero-pads model inputs and targets""" def __call__(self, batch): # Right zero-pad all one-hot text sequences to max input length # mel: [freq, length] # wav: [1, length] # ppg: [len, 1024] # pit: [len] # spk: [256] _, ids_sorted_decreasing = torch.sort( torch.LongTensor([x[0].size(1) for x in batch]), dim=0, descending=True ) max_spe_len = max([x[0].size(1) for x in batch]) max_wav_len = max([x[1].size(1) for x in batch]) spe_lengths = torch.LongTensor(len(batch)) wav_lengths = torch.LongTensor(len(batch)) spe_padded = torch.FloatTensor( len(batch), batch[0][0].size(0), max_spe_len) wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len) spe_padded.zero_() wav_padded.zero_() max_ppg_len = max([x[2].size(0) for x in batch]) ppg_lengths = torch.FloatTensor(len(batch)) ppg_padded = torch.FloatTensor( len(batch), max_ppg_len, batch[0][2].size(1)) vec_padded = torch.FloatTensor( len(batch), max_ppg_len, batch[0][3].size(1)) pit_padded = torch.FloatTensor(len(batch), max_ppg_len) ppg_padded.zero_() vec_padded.zero_() pit_padded.zero_() spk = torch.FloatTensor(len(batch), batch[0][5].size(0)) for i in range(len(ids_sorted_decreasing)): row = batch[ids_sorted_decreasing[i]] spe = row[0] spe_padded[i, :, : spe.size(1)] = spe spe_lengths[i] = spe.size(1) wav = row[1] wav_padded[i, :, : wav.size(1)] = wav wav_lengths[i] = wav.size(1) ppg = row[2] ppg_padded[i, : ppg.size(0), :] = ppg ppg_lengths[i] = ppg.size(0) vec = row[3] vec_padded[i, : vec.size(0), :] = vec pit = row[4] pit_padded[i, : pit.size(0)] = pit spk[i] = row[5] # print(ppg_padded.shape) # print(ppg_lengths.shape) # print(pit_padded.shape) # print(spk.shape) # print(spe_padded.shape) # print(spe_lengths.shape) # print(wav_padded.shape) # print(wav_lengths.shape) return ( ppg_padded, ppg_lengths, vec_padded, pit_padded, spk, spe_padded, spe_lengths, wav_padded, wav_lengths, ) class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler): """ Maintain similar input lengths in a batch. Length groups are specified by boundaries. Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}. It removes samples which are not included in the boundaries. Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded. """ def __init__( self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True, ): super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle) self.lengths = dataset.lengths self.batch_size = batch_size self.boundaries = boundaries self.buckets, self.num_samples_per_bucket = self._create_buckets() self.total_size = sum(self.num_samples_per_bucket) self.num_samples = self.total_size // self.num_replicas def _create_buckets(self): buckets = [[] for _ in range(len(self.boundaries) - 1)] for i in range(len(self.lengths)): length = self.lengths[i] idx_bucket = self._bisect(length) if idx_bucket != -1: buckets[idx_bucket].append(i) for i in range(len(buckets) - 1, 0, -1): if len(buckets[i]) == 0: buckets.pop(i) self.boundaries.pop(i + 1) num_samples_per_bucket = [] for i in range(len(buckets)): len_bucket = len(buckets[i]) total_batch_size = self.num_replicas * self.batch_size rem = ( total_batch_size - (len_bucket % total_batch_size) ) % total_batch_size num_samples_per_bucket.append(len_bucket + rem) return buckets, num_samples_per_bucket def __iter__(self): # deterministically shuffle based on epoch g = torch.Generator() g.manual_seed(self.epoch) indices = [] if self.shuffle: for bucket in self.buckets: indices.append(torch.randperm( len(bucket), generator=g).tolist()) else: for bucket in self.buckets: indices.append(list(range(len(bucket)))) batches = [] for i in range(len(self.buckets)): bucket = self.buckets[i] len_bucket = len(bucket) if (len_bucket == 0): continue ids_bucket = indices[i] num_samples_bucket = self.num_samples_per_bucket[i] # add extra samples to make it evenly divisible rem = num_samples_bucket - len_bucket ids_bucket = ( ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[: (rem % len_bucket)] ) # subsample ids_bucket = ids_bucket[self.rank:: self.num_replicas] # batching for j in range(len(ids_bucket) // self.batch_size): batch = [ bucket[idx] for idx in ids_bucket[ j * self.batch_size: (j + 1) * self.batch_size ] ] batches.append(batch) if self.shuffle: batch_ids = torch.randperm(len(batches), generator=g).tolist() batches = [batches[i] for i in batch_ids] self.batches = batches assert len(self.batches) * self.batch_size == self.num_samples return iter(self.batches) def _bisect(self, x, lo=0, hi=None): if hi is None: hi = len(self.boundaries) - 1 if hi > lo: mid = (hi + lo) // 2 if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]: return mid elif x <= self.boundaries[mid]: return self._bisect(x, lo, mid) else: return self._bisect(x, mid + 1, hi) else: return -1 def __len__(self): return self.num_samples // self.batch_size