import argparse import torch import torch.utils.data import numpy as np import librosa from omegaconf import OmegaConf from librosa.filters import mel as librosa_mel_fn MAX_WAV_VALUE = 32768.0 def load_wav_to_torch(full_path, sample_rate): wav, _ = librosa.load(full_path, sr=sample_rate) wav = wav / np.abs(wav).max() * 0.6 return torch.FloatTensor(wav) def dynamic_range_compression(x, C=1, clip_val=1e-5): return np.log(np.clip(x, a_min=clip_val, a_max=None) * C) def dynamic_range_decompression(x, C=1): return np.exp(x) / C def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): return torch.log(torch.clamp(x, min=clip_val) * C) def dynamic_range_decompression_torch(x, C=1): return torch.exp(x) / C def spectral_normalize_torch(magnitudes): output = dynamic_range_compression_torch(magnitudes) return output def spectral_de_normalize_torch(magnitudes): output = dynamic_range_decompression_torch(magnitudes) return output mel_basis = {} hann_window = {} def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False): if torch.min(y) < -1.: print('min value is ', torch.min(y)) if torch.max(y) > 1.: print('max value is ', torch.max(y)) global mel_basis, hann_window if fmax not in mel_basis: mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax) mel_basis[str(fmax)+'_'+str(y.device)] = torch.from_numpy(mel).float().to(y.device) hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device) y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect') y = y.squeeze(1) # complex tensor as default, then use view_as_real for future pytorch compatibility spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[str(y.device)], center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=True) spec = torch.view_as_real(spec) spec = torch.sqrt(spec.pow(2).sum(-1)+(1e-9)) spec = torch.matmul(mel_basis[str(fmax)+'_'+str(y.device)], spec) spec = spectral_normalize_torch(spec) return spec def mel_spectrogram_file(path, hps): audio = load_wav_to_torch(path, hps.data.sampling_rate) audio = audio.unsqueeze(0) # match audio length to self.hop_length * n for evaluation if (audio.size(1) % hps.data.hop_length) != 0: audio = audio[:, :-(audio.size(1) % hps.data.hop_length)] mel = mel_spectrogram(audio, hps.data.filter_length, hps.data.mel_channels, hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length, hps.data.mel_fmin, hps.data.mel_fmax, center=False) return mel def print_mel(mel, path="mel.png"): import matplotlib.pyplot as plt fig = plt.figure(figsize=(12, 4)) if isinstance(mel, torch.Tensor): mel = mel.cpu().numpy() plt.pcolor(mel) plt.savefig(path, format="png") plt.close(fig) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-w", "--wav", help="wav", dest="wav") parser.add_argument("-m", "--mel", help="mel", dest="mel") # csv for excel args = parser.parse_args() print(args.wav) print(args.mel) hps = OmegaConf.load(f"./configs/base.yaml") mel = mel_spectrogram_file(args.wav, hps) # TODO mel = torch.squeeze(mel, 0) # [100, length] torch.save(mel, args.mel) print_mel(mel, "debug.mel.png")