import sys,os sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) import torch import argparse from omegaconf import OmegaConf from scipy.io.wavfile import write from bigvgan.model.generator import Generator from pitch import load_csv_pitch def load_bigv_model(checkpoint_path, model): assert os.path.isfile(checkpoint_path) checkpoint_dict = torch.load(checkpoint_path, map_location="cpu") saved_state_dict = checkpoint_dict["model_g"] state_dict = model.state_dict() new_state_dict = {} for k, v in state_dict.items(): try: new_state_dict[k] = saved_state_dict[k] except: print("%s is not in the checkpoint" % k) new_state_dict[k] = v model.load_state_dict(new_state_dict) return model def main(args): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") hp = OmegaConf.load(args.config) model = Generator(hp) load_bigv_model(args.model, model) model.eval() model.to(device) mel = torch.load(args.mel) pit = load_csv_pitch(args.pit) pit = torch.FloatTensor(pit) len_pit = pit.size()[0] len_mel = mel.size()[1] len_min = min(len_pit, len_mel) pit = pit[:len_min] mel = mel[:, :len_min] with torch.no_grad(): mel = mel.unsqueeze(0).to(device) pit = pit.unsqueeze(0).to(device) audio = model.inference(mel, pit) audio = audio.cpu().detach().numpy() pitwav = model.pitch2wav(pit) pitwav = pitwav.cpu().detach().numpy() write("gvc_out.wav", hp.audio.sampling_rate, audio) write("gvc_pitch.wav", hp.audio.sampling_rate, pitwav) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--mel', type=str, help="Path of content vector.") parser.add_argument('--pit', type=str, help="Path of pitch csv file.") args = parser.parse_args() args.config = "./bigvgan/configs/nsf_bigvgan.yaml" args.model = "./bigvgan_pretrain/nsf_bigvgan_pretrain_32K.pth" main(args)