import os import torch import random import torch.utils.data as data import numpy as np from PIL import Image IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG'] def is_image_file(filename): return any(filename.endswith(extension) for extension in IMG_EXTENSIONS) class Sky(data.Dataset): def __init__(self, configs, transform, temporal_sample=None, train=True): self.configs = configs self.data_path = configs.data_path self.transform = transform self.temporal_sample = temporal_sample self.target_video_len = self.configs.num_frames self.frame_interval = self.configs.frame_interval self.data_all = self.load_video_frames(self.data_path) def __getitem__(self, index): vframes = self.data_all[index] total_frames = len(vframes) # Sampling video frames start_frame_ind, end_frame_ind = self.temporal_sample(total_frames) assert end_frame_ind - start_frame_ind >= self.target_video_len frame_indice = np.linspace(start_frame_ind, end_frame_ind-1, num=self.target_video_len, dtype=int) # start, stop, num=50 select_video_frames = vframes[frame_indice[0]: frame_indice[-1]+1: self.frame_interval] video_frames = [] for path in select_video_frames: video_frame = torch.as_tensor(np.array(Image.open(path), dtype=np.uint8, copy=True)).unsqueeze(0) video_frames.append(video_frame) video_clip = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2) video_clip = self.transform(video_clip) return {'video': video_clip, 'video_name': 1} def __len__(self): return self.video_num def load_video_frames(self, dataroot): data_all = [] frame_list = os.walk(dataroot) for _, meta in enumerate(frame_list): root = meta[0] try: frames = sorted(meta[2], key=lambda item: int(item.split('.')[0].split('_')[-1])) except: print(meta[0]) # root print(meta[2]) # files frames = [os.path.join(root, item) for item in frames if is_image_file(item)] if len(frames) > max(0, self.target_video_len * self.frame_interval): # need all > (16 * frame-interval) videos # if len(frames) >= max(0, self.target_video_len): # need all > 16 frames videos data_all.append(frames) self.video_num = len(data_all) return data_all if __name__ == '__main__': import argparse import torchvision import video_transforms import torch.utils.data as data from torchvision import transforms from torchvision.utils import save_image parser = argparse.ArgumentParser() parser.add_argument("--num_frames", type=int, default=16) parser.add_argument("--frame_interval", type=int, default=4) parser.add_argument("--data-path", type=str, default="/path/to/datasets/sky_timelapse/sky_train/") config = parser.parse_args() target_video_len = config.num_frames temporal_sample = video_transforms.TemporalRandomCrop(target_video_len * config.frame_interval) trans = transforms.Compose([ video_transforms.ToTensorVideo(), # video_transforms.CenterCropVideo(256), video_transforms.CenterCropResizeVideo(256), # video_transforms.RandomHorizontalFlipVideo(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True) ]) taichi_dataset = Sky(config, transform=trans, temporal_sample=temporal_sample) print(len(taichi_dataset)) taichi_dataloader = data.DataLoader(dataset=taichi_dataset, batch_size=1, shuffle=False, num_workers=1) for i, video_data in enumerate(taichi_dataloader): print(video_data['video'].shape) # print(video_data.dtype) # for i in range(target_video_len): # save_image(video_data[0][i], os.path.join('./test_data', '%04d.png' % i), normalize=True, value_range=(-1, 1)) # video_ = ((video_data[0] * 0.5 + 0.5) * 255).add_(0.5).clamp_(0, 255).to(dtype=torch.uint8).cpu().permute(0, 2, 3, 1) # torchvision.io.write_video('./test_data' + 'test.mp4', video_, fps=8) # exit()